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Analysis of variance type models are considered for a regression func-
tion or for the logarithm of a probability function, conditional probabil-
ity function, density function, conditional density function, hazard func-
tion, conditional hazard function or spectral density function. Polynomial
splines are used to model the main effects, and their tensor products are
used to model any interaction components that are included. In the special
context of survival analysis, the baseline hazard function is modeled and
nonproportionality is allowed. In general, the theory involves the L2 rate
of convergence for the fitted model and its components. The methodology
involves least squares and maximum likelihood estimation, stepwise addi-
tion of basis functions using Rao statistics, stepwise deletion using Wald
statistics and model selection using the Bayesian information criterion,
cross-validation or an independent test set. Publicly available software,
written in C and interfaced to S/S-PLUS, is used to apply this methodol-
ogy to real data.

1. Introduction. The last two decades have witnessed an incredible
change in the focus of statistical theory and methodology. Fueled in part
by the explosion of available computer power, highly adaptive, functional
procedures are now essential tools for modern data analysis. While freed from
the rigid assumptions implicit in classical parametric models, the statistician
is now expected to select not only the important variables in a model, but also
the functional form of the dependence on these variables. To be practically suc-
cessful, any new adaptive procedure must inevitably strike a balance between
flexibility and the haunting “curse of dimensionality.” It is in this capacity
that statistical theory is critical to the success of emerging methodologies.
Polynomial splines and their tensor products offer the flexibility required
for modern data analysis, and when used in concert with low-dimensional
analysis of variance (ANOVA) decompositions, effectively tame the curse of
dimensionality.
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In the pages that follow, we will alternate between a discussion of the prac-
tical implementation of this methodology and a very broad theoretical inves-
tigation into the properties of this approach in the context of extended linear
models. We have coined this term because our theoretical results apply to a
group of estimation problems that subsumes the classical exponential family
regression models [see McCullagh and Nelder (1989)]. While our initial moti-
vation for introducing this family was to achieve a theoretical synthesis, we
found that this framework also allows us to entertain a fairly general treat-
ment of the associated methodology. Throughout our presentation, however,
we maintain a distinction between the nonadaptive procedures that we can
treat theoretically and the adaptive methodologies that we have implemented
for density estimation, hazard regression, polychotomous regression and spec-
tral density estimation. In this presentation, we concentrate on theoretical and
methodological innovations developed through many collaborations involving
various subsets of the authors of the present paper.

In Section 2, we define the notion of an extended linear model and use
this framework simultaneously to discuss the L2 rate of convergence for the
nonadaptive version of our procedures in a variety of important statistical
settings, while in Section 3, we translate these promising theoretical results
into practically useful, adaptive methodology. Ultimately, however, the true
measure of any statistical procedure is its performance on real data. In Sec-
tions 4–9 we focus on a number of specific modeling problems for which our
approach has yielded successful data analysis tools. In each case, an S/S-PLUS
implementation is (or will soon be made) publicly available so that the “true
measure” of these procedures can be judged on the wealth of data that exist
beyond the (necessarily narrow) confines of our examples. Logspline density
estimation was our first attempt at an adaptive spline-based methodology, and
in Section 4 we present the latest version of this procedure, LOGSPLINE. In
Section 5 we describe our own version of MARS [Friedman (1991)] as a rou-
tine to handle regression problems involving many predictors. The motivation
for reworking this routine stems from an application of linear splines to poly-
chotomous regression, known as POLYCLASS, which is described in Section 6.
In order to relax the proportionality and linearity assumptions in classical sur-
vival analysis, we have developed spline routines for hazard estimation with
flexible tails (HEFT) and hazard regression (HARE). These are the subject of
Section 7. Spectral density estimation is another area in which our adaptive
methodology can easily capture all the relevant features of a given time series,
and in Section 8 we discuss LSPEC, an implementation of this approach. We
end the paper with a discussion of Triogram models, a methodology for bi-
variate function estimation through the use of splines defined over adaptively
determined triangulations.

2. Extended linear models: theory.

Notation. Consider a W -valued random variable W, where W is an arbi-
trary set. Let U = U1× · · · ×UM be a Cartesian product of compact intervals,
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each having positive length. Let K be a positive integer. Consider a vector-
valued function h = �h1; : : : ; hK� on U whose constituents h1; : : : ; hK are real-
valued functions on U. Let l�h;W� be a (not necessarily true) log-likelihood
and let 3�h� = E�l�h;W�� be the corresponding expected log-likelihood. There
may be some mild restrictions on h for the log-likelihood to be defined. We
assume that, subject to such restrictions, there is an essentially unique func-
tion φ = �φ1; : : : ; φK� that maximizes the expected log-likelihood. (Here two
functions on U are essentially equal if they differ only on a subset of U having
Lebesgue measure zero.)

Let H be a linear space of real-valued functions on U, let HK denote
the space of functions of the form h = �h1; : : : ; hK�, where the constituents
h1; : : : ; hK of h range over H, and consider the log-likelihood function l�h;W�,
h ∈ HK. We refer to any particular setup of this form as an extended linear
model. The expected log-likelihood function is given by 3�h�, h ∈ HK. The
model is said to be concave if l�h;w� is a concave function of h for each w ∈ W
and 3�h� is a strictly concave function of h when restricted to those functions
h ∈HK such that 3�h� > −∞. Typically, when the model is concave, there is
an essentially unique function φ∗ = �φ∗1; : : : ; φ∗K� ∈ HK that maximizes the
expected log-likelihood over HK. It follows from the information inequality
that if φ ∈HK, then φ∗ = φ.

In order to define ANOVA decompositions of the constituents of φ∗, we first
need to define corresponding theoretical inner products and norms. To this
end, let ψ be an absolutely continuous measure on U having a density function
that is bounded away from zero and infinity on U. Given square-integrable,
real-valued functions h1 and h2 on U, their theoretical inner product is defined
by �h1; h2� =

∫
U h1h2 dψ. Given such a function h, its theoretical norm is

defined by �h�2 = �h;h� =
∫

U h
2 dψ. Conversely, if � · � is defined directly,

then ψ is defined implicitly by the formula ψ�A� = �indA�2, where indA is the
indicator function of A, which equals 1 on A and 0 on Ac.

Let W1; : : : ;Wn be a random sample of size n from the distribution of W.
The log-likelihood function corresponding to this random sample is given by
l�h� = ∑

i l�h;Wi�. Let G = Gn be a finite-dimensional subspace of H and
let GK = GK

n denote the corresponding subspace of HK. (Note that if K = 1,
then HK = H and GK = G.) Under the assumptions of a concave extended
linear model and reasonable additional conditions, except on an event whose
probability tends to zero as n → ∞, there is a unique maximum likelihood
estimate φ̂ in GK of φ∗; that is, a unique function φ̂ = �φ̂1; : : : ; φ̂K� in GK

that maximizes the log-likelihood function over GK.
In order to define ANOVA decompositions of the constituents of φ̂, we need

to define corresponding empirical inner products and norms. For n ≥ 1, let
ψn be an empirical product measure on U that is a transform (measurable
function) of the random sample W1; : : : ;Wn. (Roughly speaking, ψn should
approach ψ as n → ∞.) Given real-valued functions h1 and h2 on U, their
empirical inner product is defined by �h1; h2�n =

∫
U h1h2 dψn. Given such a

function h, its empirical norm is defined by �h�2n =
∫

U h
2 dψn. The space G is
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said to be identifiable if the only function g ∈ G such that �g�n = 0 is given
by g = 0. Under reasonable conditions, G is identifiable except on an event
whose probability tends to zero as n→∞.

Many statistical problems of theoretical and practical importance can ef-
fectively be treated within the framework of concave extended linear models.
Most of the investigations in this framework have involved a U-valued ran-
dom variable U that is a transform of W. Let U1; : : : ;Un be the corresponding
transforms of W1; : : : ;Wn, respectively. Here, we typically let ψ be the distri-
bution of U and ψn the empirical distribution of U1; : : : ;Un.

Examples.
Regression. Consider a random pair �X;Y�, where X is X -valued and Y

is real-valued and has finite second moment. Set l�h;X;Y� = −�Y − h�X��2.
Then we get a concave extended linear model with W = �X;Y�, U = X and
K = 1. If H is the space of all functions h on X with E�h2�X�� < ∞, then
φ is the regression function of Y on X. More generally, if H is a Hilbert
space of such functions h, then φ∗ is the best approximation in H to the
regression function, where “best” means minimizing the mean squared error
E��Y−h�X��2� in predicting Y by h�X�. Here maximum likelihood estimation
in G coincides with least squares estimation.

Generalized regression. Suppose now that, for each x ∈ X , the conditional
distribution of Y given that X = x belongs to a fixed exponential family of
distributions on R of the form exp�B�θ�y − C�θ��ρ�dy�, where the parameter
θ ranges over R. Here ρ is a nonzero measure on R that is not concentrated
at a single point and

∫
R exp�B�θ�y − C�θ��ρ�dy� = 1 for θ ∈ R. The function

B�·� is required to be twice continuously differentiable and its first derivative
B′�·� is required to be strictly positive on R. It is required that there be a
subinterval S of R such that ρ is concentrated on S and B′′�θ�y − C′�θ� < 0
for θ ∈ R and y ∈ S. If S is bounded, it is required that it contain at least
one of its endpoints. Let h be a candidate for the dependence of θ on x. The
corresponding (conditional) log-likelihood is given by l�h;X;Y� = B�h�X��Y−
C�h�X��. This has the form of a concave extended linear model with W =
�X;Y�, U = X and K = 1. As special cases, we get logistic regression, probit
regression and Poisson regression models.

Polychotomous regression. Let Y be a qualitative random variable having
K+1 possible values. Without loss of generality, we can think of this random
variable as ranging over Y = �1; : : : ;K+1�. Suppose thatP�Y = k�X = x� > 0
for x ∈ X and k ∈ Y . For 1 ≤ k ≤K, let hk be a candidate for the function

log
P�Y = k�X = x�

P�Y =K+ 1�X = x� :

The corresponding log-likelihood is given by

l�h;X;Y� = h1�X�I1�Y� + · · · + hK�x�IK�Y�
− log�1+ exph1�X� + · · · + exphK�X��;
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where Ik�Y� equals 1 or 0 according as Y = k or Y 6= k and h = �h1; : : : ; hK�.
This setup has the form of a concave extended linear model with W = �X;Y�
and U = X.

Density estimation. Let Y have an unknown positive density function
on Y . We can write its log-density function in the form φ − C�φ�, where
C�h� = log

∫
exph�y�dy. The corresponding log-likelihood function is given

by l�h;Y� = h�Y� − C�h�. This setup has the form of a concave extended
linear model with W = U = Y and K = 1 provided that, for identifiability,
we impose a restriction on the functions h ∈ H such as E�h�U� = 0� and we
impose a similar condition on the functions in G.

Hazard regression. Consider a positive survival time T, a positive censor-
ing time C, the observed time min�T;C� and an X -valued random vector X of
covariates. Let δ = ind�T ≤ C� be the indicator random variable that equals
1 or 0 according as T ≤ C (T is uncensored) or T > C (T is censored) and
write min�T;C� as T ∧ C. Suppose T and C are conditionally independent
given X. For theoretical purposes, it is supposed that P�C ≤ τ� = 1, where τ
is a known positive constant. Set W = �X;T ∧ C;δ� and U = �X;T ∧ C�. Let
φ�x; t� = log f�t�x�/�1−F�t�x��, t > 0, denote the logarithm of the conditional
hazard function, where f�t�x� and F�t�x� are the conditional density and dis-
tribution functions, respectively, of T given that X = x. Since the likelihood
equals f�T ∧C�X� for an uncensored case and 1−F�T ∧C�X� for a censored
case, it can be written as

�f�T ∧C�X��δ�1−F�T ∧C�X��1−δ

=
(

f�T ∧C�X�
1−F�T ∧C�X�

)δ
�1−F�T ∧C�X��

= �exp φ�X;T ∧C��δ exp
(
−
∫ T∧C

0
exp φ�X; t�dt

)
:

Thus the log-likelihood function is given by

l�h;W� = δh�X;T ∧C� −
∫ T∧C

0
exp h�X; t�dt:

This setup has the form of a concave extended linear model with K = 1. Here
the theoretical inner product is given by

�h1; h2� = E
∫ T∧C

0
h1�t;X�h2�t;X�dt;

which defines ψ implicitly; the corresponding empirical inner product �·; ·�n
and empirical measure ψn are defined in the obvious manner.

ANOVA decompositions and convergence rates. In the theoretical develop-
ment of extended linear models, ANOVA decompositions of φ∗, φ̂, and their
constituents play important roles. For a simple illustration of such decompo-
sitions, consider a regression or generalized regression context with M = 2
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and let H be the space of all square-integrable functions on U. Then φ can
be written as

φ�x1; x2� = φ0 +φ1�x1� +φ2�x2� +φ12�x1; x2�:(2.1)

Here φ0 is the constant component, φ1 and φ2 are the main effect compo-
nents and φ12 is the two-factor interaction component. It is required that
each component be theoretically orthogonal to all choices of the corresponding
lower-order components; that is, φ1, φ2 and φ12 are each theoretically orthog-
onal to 1, and φ12 is orthogonal to all choices of φ1 and φ2. The maximum
number d of factors in any component of the model is given by d = 2. Since
d =M, the model is saturated.

Given a random sample, consider an estimate

φ̂�x1; x2� = φ̂0 + φ̂1�x1� + φ̂2�x2� + φ̂12�x1; x2�;(2.2)

where each component is empirically orthogonal to all choices of the corre-
sponding lower-order components. The right-hand sides of (2.1) and (2.2) are
referred to as the ANOVA decompositions of φ and φ̂, respectively.

Removing the interaction component, we get the additive (d = 1), unsatu-
rated approximation

φ∗�x1; x2� = φ∗0 +φ∗1�x1� +φ∗2�x2�
to φ and the corresponding estimate

φ̂�x1; x2� = φ̂0 + φ̂1�x1� + φ̂2�x2�:
In general, given a subset s of �1; : : : ;M�, letHs denote the space of square-

integrable, real-valued functions on U that depend only on the variables um,
m ∈ s. (The spaceH\ corresponding to the empty set \ is the space of constant
functions.) Let S denote a hierarchical collection of subsets of �1; : : : ;M�,
where hierarchical means that if s is a member of S and r is a subset of
s, then r is a member of S . Let H now denote the space of functions on U
of the form

∑
s∈S hs, where hs ∈ Hs for s ∈ S . Let d denote the maximum

cardinality of the sets s ∈ S . We refer to this setup as being saturated if
d = M and unsaturated if d < M. If d = 1, then the functions in H are
additive functions of the individual coordinates.

Let h ⊥ Hr mean that �h;hr� = 0 for hr ∈ Hr. Every function h ∈ H can
then be written in an essentially unique manner as h = ∑s∈S hs, where, for
s ∈ S , hs ∈ Hs and hs ⊥ Hr for every proper subset r of s. We refer to hs,
s ∈ S , as the components of the ANOVA decomposition of h. In particular, let
φ∗ks, s ∈ S , denote the components of the ANOVA decomposition of φ∗k. Also,
set φ∗s = �φ∗1s; : : : ; φ∗Ks� for s ∈ S .

For 1 ≤ m ≤ M, let Gm denote a finite-dimensional space of functions on
Um containing the constant functions. Given a subset s of �1; : : : ;M�, let Gs

denote the tensor product of the spaces Gm, m ∈ s, which is the space spanned
by functions on U of the form

∏
m∈s gm�um� as gm ranges over Gm for m ∈ s.

Observe that Gr ⊂ Gs for r ⊂ s. Let G denote the space of functions on U of
the form

∑
s∈S gs, where gs ∈ Gs for s ∈ S .
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Let g ⊥n Gr mean that �g;gr�n = 0 for gr ∈ Gr. If G is identifiable, then
every function g ∈ G can be written uniquely as g = ∑

s∈S gs, where, for
s ∈ S , gs ∈ Gs and gs ⊥n Gr for every proper subset r of s. We refer to gs,
s ∈ S , as the components of the ANOVA decomposition of g. In particular, let
φ̂ks, s ∈ S , denote the components of the ANOVA decomposition of φ̂k. Also,
set φ̂s = �φ̂1s; : : : ; φ̂Ks� for s ∈ S .

We now restrict attention to spacesGm of polynomial splines. For theoretical
simplicity, for 1 ≤ m ≤M, let 1m be a partition of Um into disjoint intervals
having common length a. By a piecewise polynomial of degree q on Um, we
mean a function g on Um such that the restriction of g to each δ ∈ 1m is
a polynomial of degree q. Let Gm be a linear space of splines on Um—that
is, piecewise polynomials of degree q on Um subject to specified smoothness
constraints, typically that of being �q − 1�-times continuously differentiable
on Um:

Given a real-valued function h on U, let �h�∞ denote the supremum of
�h� on U. Given a vector-valued function h = �h1; : : : ; hK� on U, set �h�∞ =
max��h1�∞; : : : ; �hK�∞� and �h�2 = �h1�2 + · · · + �hK�2.

Next we consider the rates of convergence that can theoretically be estab-
lished for the estimate φ̂ of φ∗ and for the corresponding estimates φ̂s of the
components φ∗s of φ∗. Let s ∈ S . Under various conditions on the spaces Gm,
m ∈ s,

inf
g∈Gs

�g −φ∗ks�∞ = O�ap�; 1 ≤ k ≤K and s ∈ S ;

with p being a suitably defined measure of smoothness of the constituents of
φ∗. Under various reasonable additional conditions,

�φ̂s −φ∗s�2 = OP

(
a2p + 1

nad

)
; s ∈ S ;

and

�φ̂−φ∗�2 = OP

(
a2p + 1

nad

)
:

Thus, by optimally choosing a ∼ n−1/�2p+d�, we get the rate of convergence
given by

�φ̂s −φ∗s� = OP�n−p/�2p+d��; s ∈ S ;(2.3)

and

�φ̂−φ∗� = OP�n−p/�2p+d��:(2.4)

In particular, by considering additive models (d = 1) or by allowing interac-
tions involving only two factors (d = 2), we can get faster rates of convergence
than by choosing d =M and thereby ameliorate the “curse of dimensionality.”

Hansen (1994) introduced the class of extended linear models and obtained
the corresponding L2 rates of convergence. The various cases of this theory
that have previously been treated are as follows: regression in Stone (1985,
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1994); generalized regression in Stone (1986, 1994), density estimation in
Stone (1990, 1994); conditional density estimation in Stone (1991, 1994) and
Hansen (1994); hazard regression in Kooperberg, Stone and Truong (1995b);
and spectral density estimation in Kooperberg, Stone and Truong (1995d).

3. Extended linear models: adaptive methodology. In practice, it
seems best to select G in an adaptive manner. Let J be the dimension of G,
let B1; : : : ;BJ be a basis of this space and write a candidate g = �g1; : : : ; gK�
for the maximum likelihood estimate φ̂ in G of φ∗ as gk =

∑
j βjkBj for

1 ≤ k ≤ K. Let b be the (suitably) ordered JK-tuple �βjk�1≤j≤J;1≤k≤K. Then
the log-likelihood function based on the sample data can be written as l�b�,
b ∈ B. Assume that this log-likelihood function is twice continuously differ-
entiable, and let ∇l�b� and H�b� denote its gradient and Hessian matrix,
respectively, at b.

The quadratic approximation Q to the log-likelihood function about b0 ∈ B
is given by

Q�b� = l�b0� + �∇l�b0��T�b− b0� + 1
2�b− b0�TH�b0��b− b0�:(3.1)

Suppose H�b0� is negative definite or, equivalently, that I�b0� = −H�b0� is
positive definite. Then Q is uniquely maximized at

b1 = b0 + �I�b0��−1∇l�b0�:(3.2)

Using (3.2) in an iterative manner, we get the Newton–Raphson method for
numerically determining the maximum likelihood estimate from any starting
value b0. If the maximum likelihood estimate exists, the log-likelihood func-
tion is strictly concave, and we apply a suitable modification to the Newton–
Raphson method (such as step-halving), then the method is guaranteed to
converge to the maximum likelihood estimate from any starting value [see
Kooperberg, Bose and Stone (1997) for details]. It follows from (3.1) and (3.2)
that

2�Q�b1� −Q�b0�� = �∇l�b0��T�I�b0��−1 ∇l�b0�:(3.3)

If b0 is the maximum likelihood estimate in a subspace of B, then the right-
hand side of (3.3) is the Rao (score) statistic for testing the hypothesis that
the “true” value of b lies in this subspace.

Let Q now be the quadratic approximation to the log-likelihood function
about the maximum likelihood estimate b̂ ∈ B, and let B0 be the subspace of
B consisting of all b ∈ B such that Ab = 0, where A has full rank. Then the
maximum of Q over B0 occurs uniquely at

b̂0 = b̂− I−1�b̂�AT�AI−1�b̂�AT�−1Ab̂:(3.4)

Moreover,

2�Q�b̂� −Q�b̂0�� = �Ab̂�T�AI−1�b̂�AT�−1Ab̂:(3.5)
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The right-hand side of (3.5) is the Wald statistic for testing the hypothesis
that b ∈ B0 under the assumption that b ∈ B. Moreover, the right-hand side
of (3.4) gives a good starting value for using the Newton–Raphson method to
find the maximum likelihood estimate in B0 when the maximum likelihood
estimate b̂ in B has already been determined.

An important aspect of the methodology for fitting extended linear models
is the adaptive choice of the space G from a family G of allowable spaces that
is typically assumed to satisfy the following propertiesx
1. For each G ∈ G , the model has dimension J ≥ Jmin.
2. There is only one G ∈ G with dimension Jmin, which we refer to as the

minimum allowable space.
3. If G0 ∈ G has dimension J, there is at least one space G ∈ G with dimen-

sion J+ 1 that contains G0 as a subspace.
4. If G ∈ G has dimension J > Jmin, there is at least one subspace G0 ∈ G of
G with dimension J− 1.

In our univariate methodologies (LOGSPLINE, LSPEC and HEFT) we use
families of allowable spaces based on cubic splines. For each of these method-
ologies there are some extra restrictions on the allowable spaces, which are
discussed in the relevant sections. Also, the HEFT and LSPEC methodologies
involve some additional basis functions that are not cubic splines. Details are
given in Sections 7 and 8.

For the multivariate methodologies POLYMARS (our version of MARS),
POLYCLASS and HARE we make use of piecewise linear splines and selected
tensor products. These spaces are discussed in detail in Section 5 about POLY-
MARS. In all of these applications we restrict attention to d ≤ 2, so that
main effects (polynomial splines in individual variables) and two-factor inter-
actions (tensor products of polynomial splines in two different variables) may
be allowed, but no three-factor or higher-order interactions are allowed in the
model. The allowable spaces for the bivariate splines considered in Section 9
are discussed in that section.

Initially, we choose G as the minimum allowable space. Then we proceed
with stepwise addition. Here we successively replace the �J− 1�-dimensional
allowable space G0 by a J-dimensional allowable space G containing G0 as a
subspace, choosing among the various candidates for a new basis function by a
heuristic search that is designed approximately to maximize the corresponding
Rao statistic. The reason for using Rao statistics here is to avoid the need
for computing maximum likelihood estimates corresponding to the various
candidate spaces G.

Upon stopping the stepwise addition process (for example, after we reach
a default or user-specified maximum dimension), we carry out stepwise dele-
tion. Here we successively replace the J-dimensional allowable space G by
a �J − 1�-dimensional allowable subspace G0 until we arrive at the minimal
allowable space, at each step choosing the candidate space G0 so that the
Wald statistic for a basis function that is in G but not in G0 is smallest in
magnitude. The reason for using Wald statistics here is to avoid the need for
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computing maximum likelihood estimates corresponding to the various can-
didate subspaces G0.

During the combination of stepwise addition and stepwise deletion, we get a
sequence of models indexed by ν, with the νth model having JνK parameters.
The (generalized) Akaike information criterion (AIC) can be used to select one
model from this sequence. Let l̂ν denote the fitted log-likelihood for the νth
model and let

AICa; ν = −2l̂ν + aJνK(3.6)

be the Akaike information criterion with penalty parameter a for this model.
We select the model corresponding to the value ν̂ of ν that minimizes AICa; ν.
In light of practical experience, we generally recommend choosing a = log n as
in the Bayesian information criterion (BIC) due to Schwarz (1978). (Choosing
a = 2 as in classical AIC tends to yield models that are unnecessarily complex,
have spurious features and do not predict well on test data.)

Alternatively, we can use an independent test set to obtain a more nearly
unbiased estimate of the expected log-likelihood and select the model that
maximizes this estimate. In the regression and classification contexts we could
use the independent test set to obtain a nearly unbiased estimate of the mean
squared error of prediction or the cost of misclassification and select the model
that minimizes this estimate.

Finally, cross-validation can be used to select a so as approximately to maxi-
mize the expected log-likelihood or minimize the expected mean squared error
of prediction or cost of misclassification. [For detailed discussions of the use
of independent test sets or cross-validation in the related context of selecting
classification and regression trees, see Breiman, Friedman, Olshen and Stone
(1984).]

Regardless of the final criteria used to choose between competing estimates,
it is likely that many of the models encountered during the stepwise addition
and deletion processes will perform similarly. By examining which terms are
present in these best fitting models, we can gain considerable insight into the
underlying features of the data. Simulation can also be used to judge whether
or not our procedures can reliably resolve important aspects of a given data
set. In addition, simulation can be used to calibrate the choice of (the implicit
smoothing parameter) a in the AIC criterion of (3.6). Illustrations of these
procedures will be given in the context of the various adaptive methodologies
presented in Sections 4–9.

As mentioned in Section 1, various adaptive methodologies and correspond-
ing software products have already been developed. The current situation re-
garding software availability is as follows:

1. Versions of the HARE, HEFT, LOGSPLINE and LSPEC methodologies are
available from statlib. (The publicly available version of the LOGSPLINE
program is slightly older than the one discussed in Section 4; see that
section for more discussion.) All these methodologies are written as C pro-
grams with an interface to the S/S-PLUS environment.



EXTENDED LINEAR MODELING 1381

2. A commercial version of HARE is currently being implemented in S-PLUS.
3. Friedman’s MARS program is available as a collection of Fortran subrou-

tines from statlib.
4. The POLYMARS program discussed in Section 5 was not written as a stand-

alone program.
5. The current version of POLYCLASS is available from Kooperberg. We are

working on a modification to this methodology to make it computationally
much less intensive when applied to huge data sets with many classes,
features and cases. In this modification we plan to use a stochastic gradient
method to obtain the maximum likelihood fit to the largest model selected
by POLYMARS.

6. A library of S/S-PLUS routines for manipulating Triogram models is cur-
rently available from Hansen and will soon be available in version 4 of S.

Our eventual goal is to develop a comprehensive set of polynomial spline mod-
eling routines.

4. Univariate density estimation (LOGSPLINE). In logspline den-
sity estimation a (univariate) log-density is modeled by a cubic spline. The
LOGSPLINE project was the first methodology project employing model se-
lection and polynomial splines on which we have worked. In this section we
describe the fourth version of LOGSPLINE. Earlier versions are discussed
in Stone and Koo (1986b) and Kooperberg and Stone (1991, 1992). The var-
ious versions of LOGSPLINE all employ cubic splines and maximum likeli-
hood estimation. The way that the program positions knots, how it deals with
the tails of the distribution and what types of data it can handle are among the
things that have evolved over time. Before presenting any details about the
LOGSPLINE methodology, we give a brief example.

In the left side of Figure 1 we show a density estimate based on a random
sample of 7125 annual net incomes in the United Kingdom [Family Expen-
diture Survey (1968–1983)]. [The data have been rescaled to have mean 1 as
in Wand, Marron and Ruppert (1991).] The spike near 0:24 is due to the UK
national old age pension, which caused many people to have nearly identical
incomes. The right side of Figure 1 zooms in on the neighborhood of this spike.
In Kooperberg and Stone (1992) we concluded that the height and location of
this spike are accurately estimated by LOGSPLINE.

The selection of knots in logspline density estimation is discussed in detail
below. Here it suffices to note that the procedure involves stepwise addition
and deletion of knots. The program starts with a fairly small number of knots.
In Figure 1 these knots are indicated by the letter “s”. It then adds knots
in those regions where an added knot would have the most influence, using
Rao statistics. The program continues adding until a prespecified maximum
number of knots is reached. The knots for this largest model are indicated
by the letter “m” in Figure 1. After the largest model has been fitted, knots
are deleted one at a time, using Wald statistics to decide which one to delete
next. The smallest model that is fitted has three knots. Out of the complete
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Fig. 1. Left: Logspline density estimate for the income data. Right: Enlargement of the area near
x = 0:24. The letters below the plots refer to the knot placement. See the text for details.

sequence of models, LOGSPLINE selects the one having the smallest value for
the AIC criterion. The knots for this “best” model are indicated by the letter
“f” in Figure 1.

Usually, as is the case here, the final model based on the AIC criterion is fit-
ted during the stepwise deletion stage of the procedure. The new LOGSPLINE
procedure thus has the advantage that it adds knots in those parts of the den-
sity where they are most needed, for example, near the spike, while it deletes
knots where they are not needed, for example, in the tails, thus creating an
adaptivity that other density estimation procedures seem to lack. This is one
of LOGSPLINE’s main advantages.

LOGSPLINE has additional advantages over other density estimation
methods:

1. While LOGSPLINE generally gives accurate estimates of the height and
location of peaks, thanks to adaptivity, it avoids spurious bumps and gives
smooth estimates in the tail of the distribution.

2. LOGSPLINE has a natural way to estimate densities with bounded sup-
port, which may be discontinuous at the end of their range.

3. LOGSPLINE can estimate the density even when some observations are
censored.

4. A LOGSPLINE density is represented by a list of numbers of moderate
length, making it convenient to use the density for further analysis.
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The LOGSPLINE method is fairly fast: on our Sparc 10 workstation the esti-
mate shown in Figure 1 was computed in about 9 s of CPU time.

In the following section we will discuss the LOGSPLINE methodology in
some detail. In Section 4.2 we present an example of the application of the
various LOGSPLINE algorithms to a much smaller data set.

4.1. The LOGSPLINE methodology.
LOGSPLINE models. As usual in our polynomial spline methodologies,

there are two main issues to LOGSPLINE:

1. Given a linear space, how are the parameters estimated?
2. How is the linear space selected?

We now discuss the types of linear spaces that we consider in LOGSPLINE
and the corresponding log-likelihood function. Then we discuss how to select
a linear space in an adaptive manner.

Given the integer K ≥ 3, the numbers L and U with −∞ ≤ L < U ≤ ∞ and
the sequence t1; : : : ; tK with L < t1 < · · · < tK < U, let G be the space of twice
continuously differentiable functions s on �L;U� such that the restrictions
of s to �t1; t2�; : : : ; �tK−1; tK� are cubic polynomials and the restrictions of s
to �L; t1� and �tK;U� are linear. The space G is K-dimensional. Set J =
K−1. Then G has a basis of the form 1;B1; : : : ;BJ. We can choose B1; : : : ;BJ
such that B1 is linear with negative slope on �L; t1�, B2; : : : ;BJ are constant
on �L; t1�, BJ is linear with positive slope on �tK;U� and B1; : : : ;BJ−1 are
constant on �tK;U�:

A column vector b = �β1; : : : ; βJ�T ∈ RJ is said to be feasible if
∫ U
L

exp�β1B1�y� + · · · + βJBJ�y��dy <∞

or, equivalently, if (i) either L > −∞ or β1 < 0 and (ii) eitherU <∞ or βJ < 0.
Let B denote the collection of such feasible column vectors. Given b ∈ B, set

f�yyb� = exp�β1B1�y� + · · · + βJBJ�y� −C�b��; L < y < U;

where

C�b� = log
(∫ U

L
exp�β1B1�y� + · · · + βJBJ�y��dy

)
:

Then f�·yb� is a positive density function on �L;U� for b ∈ B. If U = ∞, then
the density function is exponential on �tK;∞�; if L = −∞, then the density
function is exponential on �−∞; t1�:

Let Y1; : : : ;Yn be a random sample of size n from a distribution on �L;U�
having density function f. Let A1; : : : ;An be subintervals of �L;U� such that
it is known only that Yi ∈ Ai for 1 ≤ i ≤ n. If Yi is uncensored, then Ai =
�Yi�. If Yi is right censored at Ci < Yi, then Ai = �Ci;U�. If Yi is left
censored at Ci > Yi, then Ai = �L;Ci�. In either case, we refer to Ci as the
censoring value of Yi. If Yi is interval censored, then its censoring interval
Ai is a subinterval of �L;U�. Under the usual assumption that the random
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sample is independent of the censoring mechanism, the log-likelihood function
corresponding to the LOGSPLINE model has the form given by

l�b� =
∑
i

ϕ�Aiyb�; b ∈ By

here

ϕ�yyb� = log f�yyb� =
∑
j

βjBj�y� −C�b�; b ∈ B;

if A is the one-point set �y� and

ϕ�Ayb� = log
(∫

A
f�yyb�dy

)
= log

(∫
A

expϕ�yyb�dy
)
; b ∈ B;

if A has positive length. Formulas for the score function and Hessian can be
found in Kooperberg and Stone [(1992), Section 2]. These formulas become
rather complicated when A has positive length.

The maximum likelihood estimate b̂ is given by l�b̂� = maxb∈B l�b�, and

the log-likelihood of the fitted model is given by l̂ = l�b̂�. The corresponding
maximum likelihood estimate of f is given by f̂�y� = f�yy b̂� for L < y < U.

Model selection. The knot selection methodology involves initial knot
placement, stepwise knot addition, stepwise knot deletion and final model
selection based on AIC. In this subsection we assume that all the data are
uncensored; that is, Ai = �Yi� for all i.

Initially we start with K knots, with K = min�2:5n1/5; n/4;N;25�, where
N is the number of distinct Yi’s. These K knots are positioned according to
the rule described in Kooperberg and Stone (1992). This rule places knots
at selected order statistics of the data. (The rule is suitably modified when
some data are censored.) If L= −∞ and U=∞, the extreme knots are placed
at the extreme observations and the interior knots are positioned such that
the distances (on an order statistic scale) between knots near the extremes
of the data are fairly small and almost independent of the sample size, while
the knots in the interior are positioned approximately equidistantly. If L >
−∞ or U <∞, the procedure is suitably modified.

The knot-addition/knot-deletion procedure that we employ is essentially the
procedure described in Section 3. In particular, at each addition step of the
algorithm we first find a good location for a new knot in each of the inter-
vals �L; t1�, �t1; t2�, : : : ; �tK−1; tK�, �tK;U� determined by the existing knots
t1; : : : ; tK. To do this we maximize in each interval the Rao statistic for po-
tential knots located at the quartiles of the data within each interval. The
location is then further optimized, which may involve computing a few more
Rao statistics [see Section 11.3 of Kooperberg, Stone and Truong (1995a) for
our current implementation]. The search algorithm then selects among the
best candidates within the various intervals. The default value for the maxi-
mum number of knots in a model is Kmax = min�4n1/5; n/4;N;30�.
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During knot deletion we successively remove the least significant knot,
where Wald statistics are used to measure significance. We continue this pro-
cedure until only three knots are left. (Rarely, with extremely heavy tailed den-
sities, there are numerical problems when the number of knots is too small. In
such a situation we terminate the procedure as soon as these problems occur.)

Among all models that are fitted during the sequence of knot addition and
knot deletion we choose the model that minimizes AIC with default penalty
parameter a = log n, as described in Section 3.

Innovations. As we mentioned in the introduction to this section, the
present version of LOGPSLINE is the fourth version. In the first version
[Stone and Koo (1986b)], a small fixed number of knots was placed equidis-
tantly on an order-statistic logit scale. In Kooperberg and Stone (1991),
stepwise knot deletion was employed, and the initial knot placement rule
was very similar to the one we now employ. Both of these earlier papers
used a preliminary transformation for densities on the positive half-line. In
Kooperberg and Stone (1992) it was decided that such a transformation is not
needed when the knot placement is sufficiently adaptive. In the 1992 paper
we extended logspline density estimation to censored data and discussed a
user interface based on S. The present version of LOGSPLINE is the only
one that includes stepwise addition of knots. There are also several signifi-
cant computational improvements, the two most important of which are as
follows:

1. The starting values used during stepwise deletion are obtained by maximiz-
ing a quadratic approximation to the log-likelihood function, as described in
Section 3. These starting values are significantly better than those proposed
in Kooperberg and Stone (1992). Indeed, the number of Newton–Raphson
iterations may be reduced by as much as 30%.

2. In the absence of censored data the log-likelihood function is strictly con-
cave. Therefore, if a maximum of the log-likelihood function exists, it is
unique. If some of the observations are censored, however, the log-likelihood
function need not be concave. In Kooperberg and Stone (1992), this problem
was circumvented by alternating between Newton–Raphson and steepest
ascent. We now take the approach of adding a small negative constant times
the identity matrix to the Hessian, if necessary, to ensure that this matrix
is negative definite [see Kennedy and Gentle (1980), Section 10.2.2].

Note that the version of the program described in Kooperberg and Stone (1992)
is available from statlib (statlib@stat.cmu.edu). The version described in this
paper is not yet publicly available.

4.2. An example. The penalty parameter a in the AIC criterion (see Sec-
tion 3) is the main parameter in the LOGSPLINE procedure that governs the
complexity of the final density estimate. The default value for this parameter
is a = log n as in BIC. Another commonly used value is a = 2 as in (tradi-
tional) AIC. One of the goals of this section is to study the influence of this
penalty parameter by means of a small simulation study.
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Besides the choice of the penalty parameter, it may matter whether we use
the new LOGSPLINE procedure, as described in this paper, or the previous
LOGSPLINE procedure, described in Kooperberg and Stone (1992). Since the
new procedure positions some of the knots adaptively, so as approximately to
maximize the log-likelihood, conceivably it may lead to a more flexible esti-
mate.

We applied the new and previous LOGSPLINE procedures with both a = 2
and a = log n to the Buffalo snowfall data. This is a small data set (n = 63)
that has been used extensively in the density estimation literature; see, for
example, Parzen (1979) and Silverman (1986). The main issue here is the
number of modes: is there one or are there three (or maybe two)? As can be
seen from Figure 2, the different LOGSPLINE procedures provide different
answers, as summarized in Table 1. From this table we see that the model
that was selected using the new procedure with penalty parameter a = 2
would also have been selected for values of a between 0.45 and 3.01. From
(3.6) we note that if a model with J basis functions is selected for some value
of a, it will be selected for a range of values of a. Some models may not be
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Fig. 2. Logspline density estimates for the Buffalo snowfall data �n = 63� for the new and the
previous LOGSPLINE procedure and two different values of the penalty parameter.
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Table 1
Knots and modes for LOGSPLINE estimates for the Buffalo snowfall data

Optimal for a
Number Number

Procedure From To of Knots of Modes

New procedure, a = 2 0.45 3.01 7 3
New procedure, a = log n ≈ 4:14 3.01 8.38 5 2
Previous procedure, a = 2 0.03 2.65 7 3
Previous procedure, a = log n ≈ 4:14 2.65 ∞ 3 1

optimal for any value of a [see Kooperberg, Stone and Truong (1995a), Table 6].
Note that for n = 63 the starting number of knots for the previous procedure
is 10, while for the new procedure it is 6, with 4 knots being added by the
algorithm.

To investigate the behavior of the LOGSPLINE estimation procedures in
situations similar to the snowfall data, we generated 100 samples of size 63
from each of the densities shown in Figure 2, except for the estimate of the
previous procedure with a = 2 since it is very similar to the estimate of the
new procedure with a = 2. For each of the 300 samples that we obtained,
we applied the same procedures with the same choices of a as in Figure 2,
yielding four estimates for each sample. In Table 2 we summarize the number
of modes in each of these estimates. Not unexpectedly, the procedures with
a = log n tend to underestimate the number of modes, while the procedures
with a = 2 tend to overestimate it. Although it would be possible to fine
tune the penalty parameter to balance the number of times the procedure
underestimates and overestimates the number of modes, we feel that it may
be more useful to look at a few estimates with different values of the penalty
parameter before deciding on the final estimate. From Table 2 we also see that
the newer procedures are indeed a little more flexible than the old procedures,
yielding even more overestimation of the number of modes for the a = 2
procedure, while the new procedure with a = log n falls in between the two
old procedures. From this summary we thus see that with the present sample
size it is virtually impossible to distinguish accurately between densities with
one, two and three modes. However, when we generated samples from the

Table 2
Number of modes in the simulation study with n = 63∗

Data generated from: Previous a 5 log n New a 5 log n New a 5 2
Correct number of modes: 1 2 3

Estimated number of modes: 1 2 3 ≥≥≥4 1 2 3 ≥≥≥4 1 2 3 ≥≥≥4

New a = 2 39 41 19 1 7 74 17 2 6 26 64 4
New a = log n 74 23 3 0 34 64 2 0 29 40 31 0
Previous a = 2 51 37 11 1 16 68 16 0 12 22 65 1
Previous a = log n 84 13 3 0 51 46 3 0 45 26 29 0

∗The numbers of estimates having the correct number of modes are boldface.



1388 STONE, HANSEN, KOOPERBERG AND TRUONG

Table 3
Number of modes in the simulation study with n = 250∗

Data generated from: Previous a 5 log n New a 5 log n New a 5 2
Correct number of modes: 1 2 3

Estimated number of modes: 1 2 3 ≥≥≥4 1 2 3 ≥≥≥4 1 2 3 ≥≥≥4

New a = 2 41 26 25 8 0 56 32 12 0 3 68 29
New a = log n 88 12 0 0 4 90 4 2 0 9 89 2
Previous a = 2 74 19 7 0 2 79 18 4 0 9 90 1
Previous a = log n 99 1 0 0 16 82 2 0 5 17 78 0

∗The numbers of estimates having the correct number of modes are boldface.

unimodal density (previous procedure, a = log n) and estimated the density
with one of the procedures with a = 2, we noticed that when we got two modes,
the second mode was more often on the left side of the main mode than on the
right side. This is not surprising since the density is slightly flatter on that
side. Reversing this reasoning we are lead to believe that the existence of a
side mode to the right of the main mode is more plausible than the existence
of a side mode to the left of the main mode.

Although all procedures have trouble distinguishing between unimodal and
multimodal densities when n = 63, most carry out this task well when the
sample size gets larger. In Table 3 we summarize a similar simulation study
as in Table 2, except that we generated samples of size 250 from the densities
in Figure 2. For this sample size the starting number of knots for the previous
procedure is 12, while the new procedure starts with eight knots and adds
four more during the algorithm. Except for the new procedure with a = 2,
all methods get the right number of modes at least 74% of the time. The new
method with a = log n ≈ 5:52 gets it right at least 88% of the time for each of
the three situations.

5. Regression (MARS). When viewing regression as a function estima-
tion problem we recognize that the regression function may not be a linear
additive function of the predictors and instead allow nonlinear and possibly
also nonadditive functions. When there is only one predictor, nonparametric
regression can be viewed as smoothing, for which there are numerous methods
available. Some of the popular methods are kernel and local polynomial re-
gression [Wand and Jones (1995); Fan and Gijbels (1996)], smoothing splines
[Wahba (1990); Green and Silverman (1994)], and polynomial splines. Smith
(1982) wrote the first paper to use polynomial splines with adaptively selected
knots for regression problems. In her method, knots for cubic splines are posi-
tioned uniformly over the range of the data, after which a stepwise knot dele-
tion algorithm is employed.

While many of the univariate nonparametric regression methods can be
generalized to situations where there are a few predictors, the curse of dimen-
sionality applies when there are many predictors. One attractive approach
for ameliorating this curse is to model the regression function as an additive
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function of the predictors. This approach has been popularized by Hastie and
Tibshirani (1990), who treat both linear regression and generalized regression,
including logistic regression and Poisson regression, and emphasize the use
of backfitting together with a one-dimensional smoother to fit additive models
to data.

An early paper using polynomial splines for additive linear regression as
well as additive logistic regression is Stone and Koo (1986a), in which knots
were placed at nonadaptive (predetermined) quantiles. Stepwise knot selec-
tion, forward and backward, was used in the additive regression program
TURBO by Friedman and Silverman (1989). A somewhat different approach
to additive regression involving stepwise knot selection was developed by
Breiman (1993). In the applications of cubic splines in these papers, linear
constraints were placed on the tails of the splines mainly to control the vari-
ance of the corresponding estimates.

When nonadditive models are considered, the usual approach to nonpara-
metric regression has been to restrict the model to additive main effects and
selected low-order interactions. Gu and Wahba (1993) developed a smoothing
spline approach to ANOVA modeling in function estimation. Friedman (1991)
introduced multivariate adaptive regression splines (MARS), which is a poly-
nomial spline methodology for estimating the regression function.

In this section we first give a brief description of Friedman’s MARS pro-
gram. When we were working on POLYCLASS [Kooperberg, Bose and Stone
(1997)], we found it necessary to develop our own version of MARS to handle
very large data sets with many predictors and basis functions. In Section 5.2
we describe this version of MARS and list some differences between our ver-
sion and Friedman’s version. In Section 5.3 we present a small example in
which we compare the two programs.

From now on, when we mention “MARS” in this paper, we refer either to
Friedman’s version or to both versions simultaneously. We refer to our version
of the MARS algorithm as “POLYMARS.”

5.1. MARS. Let �X1;Y1�; : : : ; �Xn;Yn� denote a random sample from the
distribution of �X;Y�, where X ∈ RM and Y ∈ R. We wish to estimate f�X� =
E�Y�X�. The MARS model [Friedman (1991)] can be written as

f�X� = f�X�b� =
J∑
j=1

βjBj�X�:(5.1)

For a given set of basis functions, the unknown parameters in MARS are
estimated using least squares. The selection of the basis functions in MARS
is not easily written in the allowable spaces framework of Section 3. Here
we outline the main features of the MARS algorithm when piecewise linear
splines are used. A refinement of this algorithm makes use of continuously
differentiable functions that are similar, but not exactly identical to the cubic
splines employed in various other sections of this paper. (Note that these cubic
splines yield twice continuously differentiable functions.)
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In the MARS program the one-dimensional model f�x� = β1 is initially fit-
ted. Then, successively, models with J basis functions are replaced by models
with J + 1 or J + 2 basis functions. This is done by considering the addition
of all possible pairs of new basis functions Bm�x��xi− t�+ and Bm�x��t−xi�+,
where xi is one of the predictors, t is a new knot in that predictor and Bm�x�
is a basis function currently in the model that does not depend on xi. [Some
of these additions may involve adding only one genuinely new basis function
since one new basis function would already be in the span of the existing basis
functions and the other new basis function; see Friedman (1991).] In the MARS
algorithm every data coordinate that is sufficiently far from existing knots for
the corresponding variable is a candidate for a new knot for that variable. The
best model of dimension J + 2 or J + 1 is chosen among such candidates for
stepwise addition using a generalized cross-validation (GCV) criterion. The
stepwise addition of basis functions continues until a user-specified maximum
number of basis functions is reached. During the stepwise deletion stage of
MARS, any of the nonconstant basis functions can be removed at any step.
GCV is used to select the best overall model during the addition or deletion
stage.

An option in MARS allows the user to restrict each basis function to de-
pend on at most d predictors. The POLYMARS methodology described below
corresponds to MARS with d = 2.

5.2. POLYMARS. The setup for POLYMARS is identical to that for MARS,
except that with POLYCLASS (Section 6) in mind we allow the response Y to
be in RK with K ≥ 1. For simplicity, however, we will assume here that K = 1
since all computations generalize trivially. As in the other methodologies, we
model f�X� in a linear space, so that (5.1) again holds.

For POLYMARS it is convenient to define an allowable space by listing
its basis functions. For 1 ≤ m ≤ M, let Jm be an integer with Jm ≥ −1; if
Jm = −1 there are no basis functions depending on xm; if Jm = 0, consider
the basis function Bm0�xm� = xm; if Jm ≥ 1, consider the basis function
Bm0�xm� = xm, let xmj for 1 ≤ j ≤ Jm be distinct real numbers, and consider
the additional basis functions Bmj�xm� = �xm − xmj�+ for 1 ≤ j ≤ Jm.

Let G be the linear space having basis functions 1, Bmj�xm� for 1 ≤ m ≤
M and 0 ≤ j ≤ Jm, and perhaps certain tensor products of two such basis
functions. It is required that if Blj�xl�Bmk�xm� be among the basis functions
for some j ≥ 1, then Bl0�xl�Bmk�xm� = xlBmk�xm� and hence (if k > 0) xlxm
be among the basis functions.

One reason for adding linear terms before knots and main effects before in-
teractions is to yield models that are simpler and easier to interpret. A second
reason is to reduce the variance associated with the overall modeling proce-
dure, and a third is to reduce the likelihood of ending up with spurious terms
in the final model. The requirement of adding main effects before interactions
is also motivated by theoretical considerations regarding convergence rates
(see Section 2).
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It is easy to check that the collection G of such spaces satisfies the properties
listed in Section 3. In particular, the minimal allowable space Gmin for the
POLYMARS model is the space of constant functions. Thus the minimal model
for (5.1) has J = 1, B1 = 1 and f�X� = β1 so that f�X� does not depend on the
vector X of predictors. Note that the highest order d of interactions allowed
in a POLYMARS model is two.

Given the basis of an allowable space G as defined above, it is obvious
whether any given basis function can be deleted in one step.

Example. Let M = 4, B1 = 1, B2 = x1, B3 = �x1 − 1�+, B4 = x2, B5 = x3
and B6 = x1x2. Then B1; : : : ;B6 span an allowable space G. In this exam-
ple, B3, B5 or B6 could be removed and the remaining space would still be
allowable. If one of the basis functions B2 or B4 were removed, however, the
remaining space would not be allowable since it would still contain B6 = B2B4
(as well as B3 in the case of removing B2). The constant basis function B1 can
never be removed.

Let G0 be the allowable space having basis functions 1, Bmj�xm� for 1 ≤
m ≤M and 1 ≤ j ≤ Jm, and perhaps certain tensor products of two such basis
functions. To decide which basis function to add to this model, we compute the
Rao statistic as described in Section 3:

(i) For all spaces that can be obtained from G0 by adding a basis function
Bl0�xl� = xl to G0;

(ii) for all allowable spaces that can be obtained from G0 by adding a basis
function to G0 that is a tensor product of two basis functions Blj�xl� and
Bmk�xm�, l 6=m, that are in G0;

(iii) for an allowable space that can be obtained from G0 by adding a basis
function corresponding to a potential new knot in predictor m for 1 ≤m ≤M.
For every predictor we consider a fixed number N0 of potential new knots,
which typically are preselected order statistics of the data.

As the new space G we choose the one corresponding to the largest abso-
lute value of the Rao statistic among those candidates listed above that are
nonvacuous.

Example (Continued). Corresponding to (i), we can add the basis function
x4 to the space in the above example. Corresponding to (ii), we can addB2B5 =
x1x3, B3B4 = �x1 − 1�+x2 or B4B5 = x2x3 to the space. The basis function
B3B5 = �x1 − 1�+x3 cannot be added, since the resulting space would not
contain B2B5 = x1x3 so it would not be allowable. Corresponding to (iii), a
basis function �x1 − x1k�+ with x1k 6= 1, �x2 − x2k�+ or �x3 − x3k�+ could be
added. No basis function of the form �x4 − x4k�+ could be added before x4 is
added.

For a given allowable space, the parameters βj in (5.1) can be estimated
using least squares. The Rao and Wald statistics that are used to decide which
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basis function to add or delete now reduce to the difference in the residual
sum of squares between two nested models. The AIC criterion to select the
final model is replaced by a penalized residual sum of squares called GCV
[Friedman, (1991)]. In particular, we select the model that minimizes

RSSJ
n

/[
1− a�J− 1�

n

]2

;

where RSSJ is the residual sum of squares for the model withJ basis functions
and a is a parameter that we typically set equal to 2.5.

Several computational tricks make it possible for the POLYMARS algorithm
to be extremely fast, even for huge data sets and many basis functions. [See
Kooperberg, Bose and Stone (1997) for more details.] In particular, since we
limit the number of potential locations for new knots, inner products need to be
computed at most once. If the maximum number of basis functions considered
is Pmax, the complete POLYMARS program requires O�N0nP

2
max� floating

point operations (flops), while MARS (which has to recompute inner products
since there are too many candidate basis functions to store them all) requires
O�MnP3

max� flops. In particular, on an example with n = 10;000, M = 63,
N0 = 20 and Pmax = 80, the POLYMARS program required 474 s of CPU
time, while MARS required 12,636 s on the same machine.

Besides these computational issues, there are other differences between
MARS and POLYMARS:

1. The allowable spaces are different. This is most evident in the addition
stage, during which we add first a linear term and perhaps later a knot,
while in Friedman’s program two basis functions, essentially corresponding
to a linear function and a knot, are added at the same time.

2. During the deletion stage POLYMARS requires interaction basis functions
to be removed before the corresponding main effects can be removed. Knots
have to be removed before linear terms are removed. MARS has no such
restrictions.

3. In MARS, but not in POLYMARS, a piecewise cubic approximation to the
piecewise linear function is applied after a basis function is added.

5.3. An example. For a comparison of the two MARS programs on a small
data set, we applied them to the well studied Boston housing data [see, e.g.,
Belsley, Kuh and Welsch (1980) and Breiman, Friedman, Olshen and Stone
(1984)]. The response is the median value of homes in thousands of dollars
and there are 13 predictors, many of which are highly collinear.

In our experiment we randomly divided the data into a training set of 304
cases and a test set of 202 cases. Both MARS programs were applied to the
training set, using 30 as the maximum number of basis functions, GCV to
select the final model and otherwise the default options in both programs. (In
MARS we set the maximum number of terms in each basis function equal to
2, to make the program comparable to POLYMARS.) We then computed the
mean squared error (MSE) on the test set. We repeated this experiment 10
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Table 4
MARS fits for the Boston housing data

Method MSE CPU

MARS, linear fit 14.37 5.07
MARS, cubic approximation 15.91 5.07
POLYMARS 14.07 3.41

times. The results are summarized in Table 4, together with the average cpu
time on our SGI workstation. Since MARS supplies both a piecewise linear
fit and a piecewise cubic approximation to this fit, there are two MSE’s for
this program. The standard errors in the estimates of the mean squared error
are all approximately 1.5, while the variation in the CPU times is negligible.
Over these 10 repetitions, the correlation between the MSE of the POLYMARS
fit and that of the piecewise linear MARS fit is 0.94, while the two other
correlations are between 0.4 and 0.6. From this table we see that the difference
between the two piecewise linear fits is negligible, while both are a little better
than the piecewise cubic approximation.

We then applied both MARS procedures to the complete data, with 80 as
the maximum number of basis functions. MARS used 78.6 s CPU time to
select 53 basis functions, while POLYMARS used 33.7 s to select 41 basis
functions. Both models were very complicated: for example, POLYMARS used
10 of the 13 covariates, and 12 pairs of covariates had at least one tensor-
product basis function involving both covariates in the pair. MARS used 11 of
the 13 covariates, and 22 pairs of covariates had at least one tensor-product
basis function involving both covariates in the pair.

6. Polychotomous regression and multiple classification (POLY-
CLASS).

6.1. The POLYCLASS model. The multiple classification problem is well
studied in statistics. Typically, there is a qualitative random variable Y that
takes on a finite number K+ 1 of values, which we refer to as classes. Based
on a vector of predictors X ∈ RM, we want to predict Y.

In POLYCLASS we use piecewise linear splines and selected tensor prod-
ucts (d ≤ 2) to model the conditional class probabilities. Specifically, suppose
P�Y = k�X = x� > 0 for k ∈ K = �1; : : : ;K + 1� and x ∈ X , where X is a
subset of RM over which X ranges. Set

θ�k�x� = log
P�Y = k�X = x�

P�Y =K+ 1�X = x� ; x ∈ X and k ∈K :

Then θ�K+ 1�x� = 0 for x ∈ X and

P�Y = k�X = x� = exp θ�k�x�
exp θ�1�x� + · · · + exp θ�K+ 1�x� ;

x ∈ X and k ∈K :

(6.1)
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We refer to (6.1) as the polychotomous regression model; when K = 1 it is
referred to as the logistic regression model.

Let J be a positive integer and let G be a J-dimensional linear space of
functions on X with basis B1; : : : ;BJ. Consider the model

θ�k�x� = θ�k�xybk� =
J∑
j=1

βjkBj�x�; x ∈ X and k ∈K y(6.2)

here bk = �βk1; : : : ; βkJ�T for 1 ≤ k ≤ K, bK+1 = 0 and b is the JK-
dimensional column vector consisting of the entries of b1; : : : ;bK, which range
over B = RJK. Correspondingly, set

P�Y = k�X = xyb� = exp θ�k�xyb�
exp θ�1�xyb� + · · · + exp θ�K+ 1�xyb�

for b ∈ B; x ∈ X and k ∈K .
In POLYCLASS the basis functions Bj�x� that are used in (6.2) are piece-

wise linear splines and their selected tensor products. Based on sample data,
the coefficients βjk can be estimated by maximum likelihood, yielding a con-
cave optimization problem; see Kooperberg, Bose and Stone (1997) for more
details.

As in most of the procedures that we describe in this paper, we use stepwise
addition based on Rao statistics and stepwise deletion based on Wald statis-
tics to select the basis functions. Some details specific to POLYCLASS are
discussed in Section 6.3. The model selection in POLYCLASS can be carried
out using AIC, an independent test set or cross-validation [see Kooperberg,
Bose and Stone (1997)].

6.2. A phoneme recognition example. In Kooperberg, Bose and Stone
(1997), POLYCLASS is applied to a huge data set from the area of speech
recognition. Here we present an abbreviated version of this analysis. The
source of this data set is the Center for Spoken Language Understanding
in Portland, Oregon [Cole, Roginski and Fanty (1992); Cole et al. (1994)]. It
consists of 2165 utterances from telephone calls, which are numbers that
typically are parts of addresses, zip codes and street numbers. Each utterance
was processed by one or more listeners, who produced a time-aligned pho-
netic description of the utterance. For example, for one particular utterance,
“3o3” (three-oh-three), it was determined that from 1 to 167 ms, the speaker
produced phoneme T, followed by phoneme r from 167 to 193 ms and so on.
It should be noted that the person who decided which phoneme was spoken
was not aware of the text of the utterance. The phoneme transcription, which
we obtained from the International Computer Science Institute (ICSI) in
Berkeley, California, is based on the LIMSI phonetic alphabet [Gauvain,
Lamel, Adda and Adda-Decker (1994)].

The utterances were also processed to produce perceptual linear predic-
tive (PLP) features. Every 12.5 ms the audible spectrum, based on a concen-
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tric 25 ms piece of sound, is determined. Since we consider telephone data,
which is sampled at the frequency of 8 kHz, there are 200 observations of the
sound wave in such a 25 ms interval. A Hamming window is applied to these
200 observations before the spectrum is estimated using the discrete Fourier
transform. The estimated spectrum is next transformed to yield a critical-
band integrated power spectrum with an equal-loudness preemphasis and a
cube root nonlinearity to simulate the auditory intensity–loudness relation.
Then the eighth-order autoregressive all-pole model of the transformed spec-
trum is obtained. The coefficients of the Fourier transform representation of
the log-magnitude of this model are known as its cepstral coefficients. The
PLP features [Bourlard and Morgan (1994); Hermansky (1990); Rabiner and
Juang (1993)] that we used are the log-gain of the model (similar to the vari-
ance) and the next eight cepstral coefficients (similar to the autoregressive
coefficients).

The goal in our analysis is to estimate the probability distribution over all
phonemes at intervals of 12.5 ms based on the (nine) features available at that
time point as well as the features available at the c time points, each 12.5 ms
apart, before and after the point at which we want to estimate the phoneme
distribution.

Such a probability distribution (or, more precisely, a likelihood that is ob-
tained by weighting the estimated probabilities by the empirically determined
frequencies of the phonemes) can be used as input to train (estimate) a hid-
den Markov model, which in turn can be used for automatic speech recognition
[Bourlard and Morgan (1994)]. In the hybrid approach described by Bourlard
and Morgan, a multilayer perceptron network (a type of artificial neural net-
work) is used to estimate these probabilities.

There were 45 different phonemes, yielding 247,039 cases (12.5 ms inter-
vals). We randomly divided the data into a training set of approximately
112,000 cases and a test set of about 135,000 cases. We used the vector of
features at seven different time points, so that c = 3 above. The eight cepstral
coefficients were used exactly as we received them from ICSI. Since some
speakers speak more loudly than others, the log-gain by itself is not an in-
formative predictor of the phoneme that is being spoken. Differences in the
log-gain may be more informative. If e�i� is the log-gain at time instance i,
we used

d�i� = e�i� − 1
7

3∑
j=−3

e�i+ j�

instead of e�i�.
The standard POLYCLASS methodology would be practically impossible to

apply to the phoneme recognition data, for which K = 44, M = 9 · 7 = 63
and the sample size is given by n = 112;115. In Kooperberg, Bose and Stone
(1997) a number of modifications, which make it possible for POLYCLASS to
deal with this data set, are discussed. The most important such modification
is that instead of computing the regular Rao statistics during the stepwise
addition stage, a related least squares problem is solved.
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We fitted a POLYCLASS model with 350 basis functions to the data. This
maximum number was constrained by the computing resources that were
available to us on a network of workstations at the Maui High Performance
Computing Center. We believe that a larger number of basis functions would
give better results. Exhaustion of our computing resources also prevented us
from applying the stepwise deletion algorithm to the largest model. However,
intermediate results suggest that the deletion of some basis functions would
not significantly improve our results.

Of the 350 basis functions that were selected by the POLYMARS algorithm,
1 is the constant function, 31 are of the form xi, 45 are of the form �xi−xik�+,
134 are of the form xixj, 87 are of the form �xi − xik�+xj and 11 are of the
form �xi − xik�+�xj − xjl�+. Thus, of the 63 features, 32 are not used. Of
the remaining 31, 10 are involved in all types of basis functions, 10 more are
involved in all types of basis functions except for �xi−xik�+�xj−xjl�+ and 8 are
involved in basis functions of the types xi, �xi−xik�+, xixj and xi�xj−xjk�+.
Finally, two features have basis functions of the types xi, �xi−xik�+ and xixj
only, and one feature appears only linearly in the model.

The 63 features can be organized in a 9 (cepstral coefficients) × 7 (time
points) table. If we label the features from 1, for the feature that occurs only
linearly, to 5, for the features that are involved in all types of basis functions,
and we ignore the entries for the 32 features that are unused, we obtain
Table 5. From this table we clearly see that the most important information
is obtained from time points −3 (37.5 ms before the phoneme was spoken), 0
(when the phoneme is spoken) and 3 (37.5 ms after the phoneme was spoken).
This table suggests that, in retrospect, it would have been better to use the
cepstral coefficients at more than seven time points. (We also see that the
log-gain and the shorter lags are more important than the longer lags.)

In Figure 3 we report the misclassification rate and the fitted log-likelihood
∑
i logP�Y = Yi�X = Xi�

n

Table 5
The features in the POLYCLASS model

Time

Cepstral Coefficient 2 3 2 2 2 1 0 1 2 3

Log-gain 5 4 3 5 3
Lag 1 5 4 5 4
Lag 2 4 5 2 5
Lag 3 4 4 5
Lag 4 5 5 1 5
Lag 5 3 4 4
Lag 6 4 3
Lag 7 3 2 3
Lag 8 3 3 4
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Fig. 3. Misclassification rate �left� and fitted log-likelihood �right� versus the number of basis
functions. Solid line, training set; dashed line, test set.

for the training set and the test set combined. From these graphs it appears
that the fit would continue to improve if we were to increase the number of
basis functions.

As mentioned earlier, in this particular application the estimation of con-
ditional class probabilities is more important than classification, since these
probabilities can be used as inputs to the hidden Markov model for the ap-
proach to speech recognition described in Bourlard and Morgan (1994). POLY-
CLASS is particularly useful in this situation since, unlike most other classi-
fication methods, it provides viable estimates of the conditional class probabil-
ities. In Figure 4 we plot the estimated probability that a case is a particular
phoneme grouped in bins of size 0.01 on the horizontal axis and the fraction
of cases with that probability that correspond to the correct phoneme on the
vertical axis. Note that each case contributes 45 observations to this graph:
one observation per candidate phoneme. These graphs are extremely close to
the ideal straight line (fraction true class) = (estimated probability) for the
test set (left side) and the training set (right side).

Clearly, not all phonemes are correctly estimated with the same probability.
In Figure 5 we plot the average probability, over the test set, assigned to
each phoneme. We see from Figure 5 that, not surprisingly, this probability is
much larger for the frequently occurring phonemes than for the infrequently
occurring ones.

Other aspects of the analysis that are discussed in Kooperberg, Bose and
Stone (1997) are a comparison of POLYCLASS with other classification meth-
ods and an analysis of the patterns of misclassification by POLYCLASS. In
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Fig. 4. Fraction of phonemes that correspond to the true class versus the estimated probability.
Data have been grouped in bins of size 0:01. Left, training set; right, test set.

particular, it was found that most of the traditional classification methods
either are not able to deal with such a large data set or are outperformed
by POLYCLASS. Neural networks, however, do give better results on related,
but not identical, data. It was hypothesized that for POLYCLASS to be com-
petitive with neural networks it should be able to fit larger models faster, so
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that, for example, one could experiment with different sets of features. It may
be that a stochastic gradient method (as in the backpropagation algorithm
used in fitting neural networks) can give POLYCLASS the required computing
power.

6.3. Some more details of POLYCLASS. The basis functions that are used
in POLYCLASS are piecewise linear splines and their tensor products. We
impose similar restrictions as in POLYMARS on which basis functions are
allowed; that is, linear functions in one of the predictors are always allowed,
while basis functions of the form �xi−xik�+ are allowed in the model only when
the corresponding linear function is already included in the model. Tensor
products of basis functions involving two different predictors already in the
model are allowed, except that if such a tensor product involves a knot in
either or both of the predictors, the corresponding basis functions with linear
terms must already be in the model. Thus, for �xi − xik�+�xj − xjl�+ to be
allowed in the model xi�xj − xjl�+, �xi − xik�+xj and xixj need already be in
the model.

The main difference between POLYCLASS and the other methodologies
discussed in this paper is that in POLYCLASS there are K parameters for
each basis function, while for the other methodologies there is only one pa-
rameter. This substantially increases the amount of computation needed for
large data sets. For example, for the phoneme recognition problem discussed
in the previous section the number of parameters for the largest model equals
15,400. Thus even storage of a (pseudo-) Hessian becomes prohibitively ex-
pensive, while the computation of one score function takes O�JKn� floating
point operations (flops) for a model with J basis functions and the computa-
tion of a Hessian takes O�J2K2n� flops. The following modifications of the
POLYCLASS algorithm, to make it feasible to deal with very large data sets,
are discussed in Kooperberg, Bose and Stone (1997):

1. During the stepwise addition stage of the program we use a multire-
sponse least squares approximation to the POLYCLASS problem. That
is, we regress K + 1 response vectors Zk on the basis functions, where
Zki = ind�Yi = k�, i = 1; : : : ; n and k = 1; : : : ;K + 1, with ind(·) be-
ing the usual indicator function. This least squares approximation can
conveniently be carried out using a multiresponse version of the MARS
algorithm described in Section 5. Selecting J basis functions now requires
O�50nJ�J+K�� flops.

2. After the J basis functions have been selected using this least squares
approximation, we immediately fit the largest model using maximum like-
lihood. To obtain good starting values we successively add basis functions
to the model, using only a fraction of the cases, until all basis functions are
in the model.

3. The code was modified to enable the maximum likelihood fitting to be car-
ried out on a network of 64 workstations at the Maui High Performance
Computing Center.
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With these modifications, the time needed to fit the largest POLYCLASS model
was reduced from an estimated several years to one day on the network of
workstations.

7. Hazard regression. Recall the discussion of hazard regression in Sec-
tion 2. Let F�t�X� = P�T ≤ t�X� denote the conditional distribution function
of the survival time T given the random vector X of covariates and let f�t�X�
denote the corresponding conditional density function. Define the conditional
hazard function by λ�t�X� = f�t�X�/�1 −F�t�X�� and set φ�t�X� = log λ�t�X�.
A proportional hazard model is specified by setting φ�t�X� = φ0�t� +Xb; here
φ0�·� is the baseline log-hazard function and b ∈ RM is a vector of parame-
ters. Cox (1972) suggested a partial likelihood principle for estimating b. Since
then, analyses of censored outcome data have largely been confined to the es-
timation of linear covariate effects. See, for example, Andersen, Borgan, Gill
and Keiding (1993), Cox and Oakes (1984), Fleming and Harrington (1991),
Kalbfleisch and Prentice (1980) and Miller (1981).

The desire to relax the proportionality and linearity assumptions has led
to many further developments in survival analysis. For example, Hastie and
Tibshirani (1990), Sleeper and Harrington (1990) and Gray (1992) considered
using splines to model nonlinear covariate effects in large clinical studies. In
practice, it is even more desirable to estimate the conditional hazard, distri-
bution and density functions. Based on proportional hazards models, Breslow
(1972, 1974) suggested estimating the conditional distribution by combining
Cox’s partial likelihood principle for the covariate effects and the Kaplan and
Meier (1958) method for estimating the baseline survival function. Follow-
ing the extended linear modeling framework described in Sections 2 and 3,
Kooperberg, Stone and Truong (1995a, b) developed a more general approach,
which, without requiring the proportionality and linearity assumptions, yields
estimates of the conditional hazard, density, survival and quantile functions
in a unified manner using the relationships

F�t�x� = 1−exp
(
−
∫ t

0
λ�u�x�du

)
and f�t�x� = �1−F�t�x��λ�t�x�; t ≥ 0:

In the remainder of this section, we describe the methodologies for hazard
estimation with flexible tails (HEFT) and hazard regression (HARE), and we
give an example to illustrate their practical application.

7.1. The HEFT and HARE methodologies.
HEFT. The HEFT methodology is designed to estimate the unconditional

(or baseline) log-hazard function. Let f denote a positive density function on
�0;∞� and let F, λ and φ be its distribution, hazard and log-hazard functions,
respectively. Given the integer J ≥ 3 and the sequence t1; : : : ; tJ with 0 < t1 <
· · · < tJ < ∞, let G0 be the �J − 2�-dimensional space of twice continuously
differentiable, cubic spline functions s on �0;∞� with knots t1; t2; : : : ; tJ such
that s is constant on �0; t1� and on �tJ;∞�. Let B1; : : : ;BJ−2 be a basis of this
space such that BJ−2 = 1 on �0;∞� and B1; : : : ;BJ−3 = 0 on �tJ;∞�.
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To enhance its flexibility in estimating the hazard function, the space G0
can be augmented by adding the basis functions

B−1�t� = log
t

t+ c and B0�t� = log �t+ c�; t > 0;

with c > 0 being a parameter. In fact, the linear space G spanned by
G0 ∪ �B−1;B0� includes Weibull and Pareto distributions as special cases
[see Kooperberg, Stone and Truong (1995a)]. The collection G of such J-
dimensional spaces G forms a family of allowable spaces.

Set

b = �β−1; β0; β1; : : : ; βJ−2� ∈ RJ;
φ�·yb� = β−1B−1�·� + β0B0�·� + β1B1�·� + · · · + βJ−2BJ−2�·�

and

B =
{
�β−1; β0; β1; : : : ; βJ−2� ∈ RJx β−1 > −1 and β0 ≥ −1

}
:

The above constraints ensure that
∫ t

0 exp φ�uyb�du < ∞ for 0 < t < ∞ and∫∞
0 exp φ�tyb�dt = ∞. We use φ�·yb�, b ∈ B, to model the log-hazard function.

Given a random sample, the maximum likelihood estimate b̂ of b is obtained
by using the Newton–Raphson method. (Note that the log-likelihood function
here is easily obtained from that for hazard regression discussed in Section 2
by ignoring the covariates.) Estimates of the log-hazard, hazard, survival, dis-
tribution and density functions are given by φ̂�t� = φ�·y b̂�, λ̂�t� = exp φ̂�t�,
Ŝ�t� = exp

(
−
∫ t

0 λ̂�u�du
)
, F̂�t� = 1 − Ŝ�t� and f̂�t� = Ŝ�t� λ̂�t�, t ≥ 0. The

corresponding estimate of the pth quantile is given by Q̂p = F̂−1�p�.
Observe that the above log-hazard estimate depends on the choice of G.

HEFT selects such a G adaptively from G by following the methodology for
model selection described in Section 3. (In the current implementation of
HEFT, the choice of which logarithmic terms to include in the model is made
initially by the user and is not modified during the process of stepwise addition
and deletion of knots.)

HARE. HARE is a routine for estimating covariate effects on a possibly
censored response variable. Here the allowable spaces are similar to those
used in POLYMARS, except that the conditional log-hazard function also de-
pends on time. To this extent we also allow piecewise linear basis functions
depending on time and tensor products of these with (piecewise linear) basis
functions depending on a covariate. As with POLYMARS and POLYCLASS,
the highest order of interactions allowed is two. Let G denote the collection of
such allowable spaces.

For an allowable space in G , we get estimates of the coefficients of basis
functions by maximizing the log-likelihood function given in the discussion
of hazard regression in Section 2. This procedure is carried out using the
Newton–Raphson method. Estimates of the conditional log-hazard, conditional
hazard, conditional survival, conditional distribution and conditional density
functions are obtained in a manner similar to HEFT.
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For model selection, the adaptive methodology is essentially the same as
described in Section 3 with d ≤ 2. In the current implementation of HARE,
the fitted conditional log-hazard function has a constant tail. For details, see
Kooperberg, Stone and Truong (1995a).

Besides providing a unified framework for estimating the conditional haz-
ard, survival, density and quantile functions, HEFT and HARE also allow
considerable flexibility in fitting survival data. If the fitted model contains
an interaction involving time and a covariate, then the assumption of pro-
portionality is questionable. On the other hand, HARE can be forced to fit a
proportional hazards model or even an additive model (d = 1).

HEFT as preprocessor to HARE. Before applying HARE, it is useful to
transform the time variable using HEFT. There are two advantages in doing
this. First, because of the piecewise linear nature of HARE, the first derivative
of the baseline hazard function can have big jumps at various knots in time.
The HARE model for the transformed data, on the other hand, typically has
fewer knots and the jumps in the first derivative of the hazard function at
these knots tend to be smaller. Second, the fitted conditional hazard function
beyond the last knot is necessarily constant when HARE is applied to the
original data, but this is not the case when HARE is applied to the transformed
values of time.

Let λ0 denote the unconditional (baseline) hazard function of T and set
q0 = − log�1 − F0� with F0 being the distribution function corresponding to
λ0, so that q0 is the baseline cumulative hazard function. Then q0�T� has
constant hazard function [see Kooperberg, Stone and Truong (1995a)]. This
motivates the use of HARE on the transformed responses.

We next describe relationships between the transformed and untransformed
data. Let f1,F1 and λ1 denote the conditional density, distribution and hazard
functions of q0�T� given X. Then the corresponding functions for T given X
are given, respectively, by

f�t�X� = λ0�t�f1�q0�t��X�; F�t�X� = F1�q0�t��X�

and

λ�t�X� = λ0�t�λ1�q0�t��X�:

Moreover, the pth conditional quantile function is given by

Qp�x� = F−1�p�x� = q−1
0 �F−1

1 �p�x��:

Given a random sample, our methodology starts by applying HEFT to the
response variables (no covariates), yielding an estimate λ̂0 of λ0. Then q̂0 is
constructed based on the formula of the cumulative hazard function. Next the
HARE methodology is applied to the transformed responses q̂0�T�, yielding
an estimate λ̂1 of the conditional hazard function for the transformed data.
Finally, we obtain estimates of the original conditional density, distribution,
hazard and quantile functions using the relationships given above.



EXTENDED LINEAR MODELING 1403

7.2. An example. In this section we use HEFT and HARE to analyze data
from a clinical trial. The studies of left ventricular dysfunction [SOLVD (1990)]
involves two double-blind, randomized clinical trials to test improved survival
by treatment with enalapril, an inhibitor of angiotensin-converting enzyme,
in patients with left ventricular dysfunction with or without congestive heart
failure (CHF). The study started with a registry of 6273 patients involving 23
centers located in the United States, Canada and Belgium. Men and women
aged 21–80 years with an ejection fraction (defined below) of at most 35% were
eligible for the trials. In particular, patients with overt CHF were eligible for
the treatment trial, whereas those with left ventricular dysfunction but no
history of overt CHF were eligible for the prevention trail. Recruitment began
in 1986, and the study terminated in 1991.

We will illustrate the use of HEFT and HARE on the treatment arm consist-
ing of 2569 patients. Here the event is defined as death or hospitalization due
to CHF. The response is time (in days). Among the 2569 observations, 1219
were censored. The censoring occurred when the patient was lost to follow-up
or was still alive and never hospitalized due to CHF by the end of the study.
We begin our analyses by applying HEFT to the possibly censored responses,
yielding a model for the unconditional log-hazard function consisting of three
knots and a log term (B−1). Figure 6 shows estimates of the unconditional haz-
ard and survival functions. As the right side of Figure 6 shows, our survival
function estimate is remarkably close to the Kaplan–Meier estimate.

Next, HARE was applied to examine covariate effects on CHF. We used a
set of 10 covariates: treatment (1=enalapril, 0=placebo); serum sodium level
(serum); systolic blood pressure (SBP); dystolic blood pressure (DBP); smoking
(1= currently smoking, 0= not currently smoking); sex (1= female, 0=male);
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data.
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age; adherence (a measure of treatment or placebo use in terms of numbers
of pills taken and dispensed); New York Heart Association (NYHA) functional
class I–IV (with I indicating the least severity of illness and IV indicating the
greatest severity); and ejection fraction (EF).

The ejection fraction (EF) is the fraction (measured as a percentage) of the
blood that is pumped from the left ventricle into the body’s vascular system.
After oxygenation in the lung, blood flows back to the left atrium of the heart
and continues to the left ventricle. This is the chamber that “ejects” the blood
from the heart into the body. Clearly, 100% of the blood cannot be ejected, but
in normal hearts this fraction is at least 60%. In damaged hearts, where the
muscle of the left ventricle is not working well (maybe from the effects of a
previous heart attack), the fraction can be much lower, say 25–40%. Clinically,
an EF of less than 35% is reason for concern. Below 15–20% the blood backs
up into the atrium and lung, causing congestion and malfunctioning of the
lung (CHF) and possibly death.

After removing the 69 cases with missing values on one or more covari-
ates, we obtained a data set with 2500 observations and 1308 events. In our
analyses we treated the covariate NYHA as an unordered categorical variable.
Alternatively, we could have treated it as an ordinary variable having the four
possible values 1, 2, 3 and 4.

Table 6 shows the results of applying HARE in various ways. Specifically,
Model 1 summarizes the fit to the untransformed responses, which has 15

Table 6
HARE analyses of the SOLVD data∗

Basis Function Model 1 Model 2 Model 3 Model 4

1 7.550 34.900 32.016 32.706
Age 0.013 0.010 0.009 0.011
Smoking 0.400 0.184
DBP −0:424 −0:388 −0:400
EF −0:567 −0:026 −0:026 −0:026
NYHA I −0:294 −0:291
NYHA II −0:462
NYHA III 0.757 0.527 0.485 0.479
NYHA IV 1.210 0.980 18.577 19.004
Serum −0:114 −0:248 −0:227 −0:233
Treatment −0:124 −0:312 −0:302 −0:303
�111− t�+ 0.006
�562− t�+ 0.002
DBP × serum 0.003 0.003 0.003
EF × serum 0.004
NYHA IV × serum −0:127 −0:130
�562− t�+ × smoking −0:001
�562− t�+ ×NYHA II 0.001
�562− t�+ × treatment −0:001

BIC 21,620.17 21,562.30 21,561.83 21,562.32

∗See text for the model descriptions.
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basis functions and BIC = 21;620:17. As discussed in Section 7.1, the above
analysis can further be refined by applying HARE to the transformed re-
sponses using q̂0�t� = − log �1 − F̂0�t��, where F̂0�t� is shown on the right
side of Figure 6. This yields a proportional hazards model having nine basis
functions with no knots and BIC = 21;562:30. (Actually, BIC for the trans-
formed data is 2480.49. We used the relationships described in Section 7.1 to
retrieve BIC for the untransformed data.) The resulting fit is referred to as
Model 2 in Table 6. Note that all of the interactions and the two nonlinear
terms involving time have disappeared; this may be explained by the nature
of the transformation q̂0�T�. While HARE models allow for nonlinearity, this
smaller model is linear and easier to interpret. In general, one of the strengths
of HARE is that it chooses more complicated models only when simpler ones
do not fit nearly as well [see the examples in Kooperberg, Stone and Truong
(1995a)].

HARE facilitates the visual examination of covariate effects. For example,
Figure 7 shows estimates of the conditional hazard and survival functions for
a patient having the covariate values given by

treatment = 1; serum sodium = 138:95; EF = 24:85;

DBP = 76:81; NYHA = IV; smoking = 1; age = 60:88:

These values were chosen to represent an average smoking, NYHA class IV,
treated patient. Figure 7 also compares results from untransformed data
(Model 1) and transformed data (Model 2). We remark that the estimated
hazard function for the untransformed data exhibits a constant tail, as was
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discussed in Section 7.1. Estimates of the conditional density and quantile
functions are also easily obtained using HARE.

We continue our analysis by using other options in HARE. Since Model 2
is a proportional hazards model, we decided to reapply HARE forcing it to fit
such a model. Model 3 of Table 6 summarizes the resulting fit, indicating a
slightly different proportional hazards model with 11 basis functions and BIC
= 21,561.83. (BIC for the transformed data is 2480.01.) Comparing this model
with Model 2, we note that HARE has reduced BIC slightly by including two
more basis functions, NYHA I and NYHA IV× serum.

For a further comparison, we fitted the transformed values of time and the
same covariates as above using coxreg from S-PLUS. In light of the analysis
using HARE, we forced the two interaction terms of Model 3 into the Cox model
(the default form of coxreg estimates main effects only). Table 7 provides a
summary of the fit.

Observe that the interaction terms are highly significant and that the fit
is similar to Model 3, except that the covariate smoking is significant and the
constant term is not allowed in coxreg. Since there is no knot in Model 3,
we felt that the default penalty value log�2500� := 7:82 of HARE might have
been too high. (This is equivalent to using the chi-squared test with 1 de-
gree of freedom and the significance level of α := 0:005 to test the model with
12 basis functions versus a submodel with 11 basis functions.) By using a
smaller penalty value of 7.1 (α := 0:007) and refitting the data using HARE,
we obtained Model 4 in Table 6, which has 12 basis functions. This model is
in close agreement with the one obtained by using coxreg and shown in Ta-
ble 7. Moreover, the standard errors of the coefficients in Model 4 (not shown)
are remarkably close to the corresponding ones in Table 7. We conclude that
Model 4 is our most reasonable HARE model for the data.

Note that the treatment effect is included in all five models discussed above.
In fact, the treatment was so effective that, for ethical reasons, the trial
was terminated early. Other important covariates are the ejection fraction

Table 7
Analyses of the SOLVD data using coxreg from S-PLUS

Variable Coefficient SE P-value

Age 0.011 0.003 0.000
Smoking 0.185 0.067 0.006
DBP −0:401 0.106 0.000
EF −0:027 0.004 0.000
NYHA I −0:293 0.106 0.005
NYHA III 0.479 0.059 0.000
NYHA IV 19.480 6.040 0.001
Serum −0:234 0.061 0.000
Treatment −0:304 0.056 0.000
DBP × serum 0.003 0.001 0.000
NYHA IV × serum −0:134 0.044 0.002
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Fig. 7.

(EF), age and the NYHA functional class. To demonstrate another strength
of HARE, we use Model 4 to examine graphically some of the above covari-
ate effects. Figure 8 illustrates estimates of the conditional hazard rate and
survival probability after 3 years as a function of EF. We see that the hazard
rate decreases and the survival probability increases with EF. Figure 9 shows
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and as a function of EF �right�. Same covariates as in Figure 7.

estimates of the hazard rate and survival probability after 3 years as functions
of age. It is observed that older participants have a higher risk than younger
ones.

As a final illustration of HARE, Figure 10 shows estimates of the 20th, 50th
and 80th percentiles as functions of age and EF based on Model 4. Observe
that the median survival time decreases with age, while it increases with EF.

In summary, in the above analyses the HEFT and HARE methodologies
yielded estimates of the (conditional) hazard, survival, density and quan-
tile functions in a consistent manner without requiring the proportionality
assumption. Moreover, our highly adaptive methodology performs well in
comparison with the traditional approach even when that approach is ap-
plicable. In light of this example and those given in Kooperberg, Stone and
Truong (1995a), we find that HEFT and HARE are useful tools for survival
analysis.

8. Spectral analysis. For stationary time series, it is known that the
periodogram ordinates at the Fourier frequencies are approximately indepen-
dent and have an exponential distribution with mean equal to the spectral
density function. This implies that the periodogram is not a consistent esti-
mate, but consistency can be achieved by smoothing the periodogram ordinates
[see Brillinger (1981)]. In this section we present our version of the spectral
estimate by treating it as a special case of the generalized regression problem
discussed in Section 2. Specifically, we use the theory and methodology of ex-
tended linear models to estimate the logarithm of the mean of the exponential
distribution function. Here the mean is the spectral density function.



EXTENDED LINEAR MODELING 1409

To describe the possibly mixed spectral distribution, consider a real-valued,
second-order stationary time series Xt with mean E�Xt� = E�X0� and co-
variance function γ�u� = cov�Xt;Xt+u�. Assume that the time series has the
form

Xt =
p∑
j=1

Rj cos�tλj + ϕj� +Yt:

Here 0 < λj ≤ π; ϕj are independent and uniformly distributed on �−π;π�;
Rj are independent, nonnegative random variables such that R2

j has positive
mean 4ρj; andYt is a second-order stationary time series withE�Yt� = E�X0�
and autocovariance function γc�u� = cov�Yt;Yt+u� satisfying

∑
u �γc�u�� <∞.

The spectral distribution function of Xt is given by

F�λ� =
∫ λ
−π
fc�ω�dω+

∑
ω≤λ

fd�ω�; �λ� ≤ π;

where

fc�λ� =
1

2π

∞∑
u=−∞

γc�u� exp�iuλ�; �λ� ≤ π;

and

fd�λ� =
{
ρj; if λ = ±λj;
0; otherwise:

The functions fc and fd are referred to as the spectral density function and
line spectrum of the time series Xt.

Note that fc and fd are nonnegative and symmetric about zero and that
they can be extended to periodic functions on �−∞;∞� with period 2π. From
now on we limit our attention to the interval �0; π�. Observe that if the in-
dicated derivatives of fc exist, then f′c�0�, f′′′c �0�, f′c�π� and f′′′c �π� all equal
zero.

8.1. The LSPEC methodology. Let δa�λ� equal 1 or 0 according as λ = a
or λ 6= a. Given a time series X1;X2; : : : ;XT−1, set f = fc + �T/2π�fd,
φ = log f and φc = log fc. Then φ = φc + φd, where φd = β1δλ1

+ · · · +
βpδλp with β1; : : : ; βp > 0. Moreover, fd = �2π/T��exp φd − 1�fc. In the
following discussion, we will use cubic splines to obtain a finite-dimensional
approximation to φc and hence to φ.

First, we describe the space of splines that will be used to model the log-
arithm of the spectral density function. Given the positive integer Jc, let Gc

be the Jc-dimensional space of twice continuously differentiable, cubic spline
functions s with the knot sequence 0 ≤ t1 < · · · < tJc ≤ π. We require that
s′�0� = s′�π� = 0. Also, s′′′�0� = 0 unless t1 = 0, and s′′′�π� = 0 unless tJc = π.
Let B1; : : : ;BJc be a basis of Gc. Then functions in Gc can be extended to
splines on �−∞;∞� that are symmetric about zero, periodic with period 2π,
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have a knot at zero if and only if t1 = 0 and have a knot at π if and only if
tJc = π.

Next, we describe the space that will be used indirectly to model the line
spectrum. Given the nonnegative integer Jd and the increasing sequence
a1; : : : ; aJd of members of �2πj/Tx 1 ≤ j ≤ T/2�, letGd be the Jd-dimensional
space of nonnegative functions s on �0; π� such that s = 0 except at a1; : : : ; aJd .
Set Bj+Jc�λ� = δaj�λ� for 1 ≤ j ≤ Jd. Then BJc+1; : : : ;BJ form a basis of Gd,
where J = Jc +Jd.

Let G be the space spanned by B1; : : : ;BJ. The collection G of such J-
dimensional spaces G forms a family of allowable spaces. Set

φc�·ybc� = β1B1�·� + · · · + βJcBJc�·�; bc = �β1; : : : ; βJc� ∈ R
Jc;

φd�·ybd� = βJc+1BJc+1�·� + · · · + βJBJ�·�;
bd = �βJc+1; : : : ; βJ� with βJc+1; : : : ; βJ ≥ 0;

and

φ�·yb� = φc�·ybc� +φd�·ybd�; b = �β1; : : : ; βJ�:
We use φc�·ybc� to model the logarithm of the spectral density function and
φ�·yb� to model log f. Thus, fc�·ybc� = expφc�·ybc�, f�·yb� = expφ�·yb� and

fd�·ybc� =
2π
T
�exp φd�·ybd� − 1�fc�·ybc�:

Denote the Fourier frequencies by λk = 2πk/T for k = 0;1; : : : ; �T/2�. Let
Ik denote the kth ordinate of the periodogram, which is given by

Ik = I�T��λk� = �2πT�−1

∣∣∣∣
T−1∑
t=0

exp�−iλkt�Xt

∣∣∣∣
2

:

For Gaussian time series, Ik, 1 ≤ k ≤ �T/2�, are independent and have the
exponential distribution with mean equal to f�λk� = expφ�λk�. Hence, the
log-likelihood function is given by

l�b� = 1
�T/2�

�T/2�∑
k=1

(
δπ�λk�

2
− 1

)
�φ�λkyb� + Ik exp�−φ�λkyb���; b ∈ RJ:

Observe that the log-likelihood is a concave function of b.
Let b̂ denote the maximum likelihood estimate of b, which is obtained as

usual by the Newton–Raphson method. The corresponding estimate of the
function f is given by f̂�λ� = f�λy b̂�. Similarly, estimates of the spectral
density function and line spectrum are given by f̂c�·� = fc�·y b̂c� and f̂d�·� =
fd�·; b̂d�, where b̂c = �β̂1; : : : ; β̂Jc� and b̂d = �β̂Jc+1; : : : ; β̂J�.

As in other cases discussed in this paper, our spectral estimate depends on
G. We follow the procedure described in Section 3 (with d = 1) to select G
adaptively from G . This methodology is referred to as LSPEC in Kooperberg,
Stone and Truong (1995c). (In the current implementation of LSPEC, if an
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atom has a frequency that is not of the form 2π k/T, then it is typically re-
placed by the two closest adjacent atoms with frequencies of this form. Also,
LSPEC prevents atoms with small mass from entering the model.)

In the absence of atoms, the rate of convergence of the maximum likelihood
estimate φ̂c is given in Kooperberg, Stone and Truong (1995d). This result
lends theoretical support to LSPEC.

8.2. An example. We will use LSPEC to analyze the result of a neuro-
physiological experiment consisting of 30 trials of electrical potential (EP)
measurements [see Durka, Kelly and Blinowska (1995)]. It started with a
24 Hz (cycles/s), 500 µm peak-to-peak sinusoidal stimulus applied to the right
fingertip. The responses are the EP measurements at the scalp and wrist.
Each EP measurement lasted for 6 s, with the stimulus coming on at 2 s and
staying on for the remainder of the trial. The channels were sampled at 256
times/s, giving a total of 1536 sampling points per channel.

Since the stimulus was not active for the first 2 s, our analyses were based
on the last 4 s of recordings, so that T = 1024. Figure 11 shows the averages of
30 EP responses from the scalp and wrist, which appear to be stationary. The
left side of Figure 12 shows the LSPEC estimate of the scalp EP spectrum. We
observe two lines with frequencies of 9.25 and 9.75 Hz [the former frequency
corresponds to k = 4�9:25� = 37 and λ = 2π�37�/1024 := 0:227, and the latter
frequency corresponds to k = 39 and λ := 0:239]. These are approximately the
alpha-rhythm frequencies. There is also a peak with a frequency of 48 Hz �λ :=
1:178�, corresponding to the second harmonic of the stimulus frequency 24 Hz.
In the right side of Figure 12, we observe that the wrist EP responded with a
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Fig. 11. Averages of 30 series of electrical potential �EP� measurements from the scalp �top� and
wrist �bottom�.
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Fig. 12. The scalp EP spectrum �left� has line frequencies equal to 9:25 and 9:75 Hz; the peak
has a frequency equal to 48 Hz. The line frequencies of the wrist EP spectrum �right� are 24 and
60 Hz.

frequency (the first line) at 24 Hz, while it also picked up the electrical power
line frequency at 60 Hz. Note that the background noise level (the continuous
spectrum) is much higher in the scalp EP than in the wrist EP.

The responses were then filtered to remove the unwanted (alpha-rhythm,
electrical power line) signals and low frequency components of background
noise, and sampled at 128 times/s, yielding a total of 512 sampling points.
Applications of LSPEC to the filtered observations are illustrated in Figure 13.
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Fig. 13. Spectra of the filtered EP data. The scalp �left� has line frequencies equal to 24 and 48
Hz. The wrist �right� has a line frequency equal to 24 Hz.
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For the scalp EP data, the resulting fit is a spline with seven knots and three
lines in the model. The first line has a frequency of 24 Hz �λ := 1:178�, showing
that LSPEC has located the desired signal. The other two lines correspond to
the second harmonic. The fit for the wrist EP data shows a spline with eight
knots and one line (at 24 Hz) in the model.

In summary, in this example the LSPEC methodology yielded a precise es-
timate of the stimulus frequency (24 Hz) and provided an informative descrip-
tion of the neurophysiological data. More generally, in the light of the present
example and those given in Kooperberg, Stone and Truong (1995c), we find the
LSPEC methodology to be both effective and of considerable practical value.

9. Models based on multivariate splines. In the last two decades, a
considerable body of literature on multivariate spline spaces has been amassed
by approximation theorists, numerical analysts and computer scientists. In
this section, we demonstrate the practicality of these tools for statistical ap-
plications. We begin our survey on a theoretical note, developing rates of
convergence for ANOVA decompositions based on multivariate splines and
their tensor products. Then we shift our emphasis somewhat and consider
techniques for adaptively constructing multivariate spline spaces, borrowing
heavily from the ideas of knot addition and deletion presented in previous
sections. Finally, we present a simple illustrative application of these ideas to
bivariate logspline density estimation.

9.1. The extended linear model revisited. In Section 2, we introduced the
notion of a concave extended linear model and discussed a variety of statis-
tical problems that can be treated effectively within this framework. In each
of these cases, our data consist of a sample from the distribution of a random
vector W. In this section, we focus our attention on the derived variable U,
which is typically a subvector of W. Broadly speaking, we are interested in es-
timating a (possibly) vector-valued function φ∗ = �φ∗1; : : : ; φ∗K�, where the con-
stituents φ∗k, 1 ≤ k ≤K, are real-valued functions on a set U = U1×· · ·×UM,
the range of U. So far, we have considered only the case in which each of the
sets U1; : : : ;UM is (in theory) a compact interval with positive length. Un-
der this restriction, we are naturally led to estimators of φ∗ that are built
up from univariate spline spaces defined on these intervals. From a method-
ological perspective, however, tensor products of univariate splines may not
be flexible enough to capture all of the features exhibited by a particular data
set. In addition, known structural relationships between the variables that
constitute U might suggest that the domain of φ∗ is something other than a
hyperrectangle.

In the rest of our discussion, we allow U1; : : : ;UM to be compact sub-
sets of Rd1; : : : ;RdM , respectively. In this case, the unknown function φ∗ =
φ∗�u1; : : : ; uM� is still defined on U = U1×· · ·×UM, with the distinction that
now the individual variables um may be vectors. Recall that our approach to
estimating φ∗ ∈ HK begins with an ANOVA decomposition φ∗ = ∑

s∈S φ∗s
that decomposes φ∗ into its components φ∗s; s ∈ S . A parallel construction
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is then used to define an ANOVA decomposition of the maximum likelihood
estimate φ̂ = ∑s∈S φ̂s in a space GK consisting of smooth, piecewise polyno-
mials. Not surprisingly, this approach can successfully be applied to derive
the convergence properties of φ̂ even when we allow the sets U1; : : : ;UM to
be more complicated than compact intervals of the real line. Once we remove
these restrictions, the components φ̂s; s ∈ S , of the ANOVA decomposition of
φ̂ become multivariate splines and their tensor products.

To be more specific, for 1 ≤ m ≤ M, let 4m be a partition of Um ⊂ Rdm
into disjoint (measurable) sets and for simplicity assume that each set has a
common diameter a. By a piecewise polynomial of degree q over 4m, we now
mean a function g on Um such that the restriction of g to each set δ ∈ 4m is
a polynomial of degree q in the dm variables that constitute um. Let Gm be a
linear space of multivariate splines; that is, piecewise polynomials of degree q
on Um that satisfy certain smoothness constraints. Following the development
in Section 2, for each s ∈ S , we let Gs denote the tensor product of the spaces
Gm, m ∈ s.

The rate at which φ̂ and its components approach φ∗ and its components
were derived in Hansen (1994). In the simple case described so far, if we
assume that the spaces Gs are flexible enough to ensure that

inf
g∈Gs

�g −φ∗ks�∞ = O�ap�; 1 ≤ k ≤K and s ∈ S ;

where p is a measure of smoothness of the constituents of φ∗, we find that

�φ̂s −φ∗s�2 = OP

(
a2p + 1

nad

)
; s ∈ S ;

and

�φ̂−φ∗�2 = OP

(
a2p + 1

nad

)
;

where d = maxs∈S
∑
m∈s dm. As we collect more and more data, if the sets in

our partition shrink so that a ∼ n−1/�2p+d�, then we obtain the rates in (2.3)
and (2.4) with the indicated definition of d. Hansen (1994) extended these
results and, in particular, derived L2 rates of convergence for the case when
the various constituents φ∗s satisfy different smoothness conditions and the
sets in the triangulations 4m do not share a common diameter.

9.2. Bivariate splines and the extended linear model. For simplicity, we
now focus our discussion on saturated, bivariate models, where φ∗ = φ. As-
sume that U is a compact region in the plane so that φ is a function of u ∈ R2.
In the context of our previous discussion, we now view U as a single variable
and hence will not attempt to decompose φ into components based on indi-
vidual spatial coordinates. In the remaining pages, we will discuss the use of
bivariate splines to construct estimates of φ.

Triangulations and piecewise linear basis functions. Let 4 be a collection
of closed subsets of U having disjoint interiors and satisfying U = ⋃δ∈4 δ. In
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general, the set 4 is a tessellation of U. If each element δ ∈ 4 is a triangle,
4 is said to form a triangulation of U. Furthermore, a triangulation 4 is said
to be conforming if the nonempty intersection between pairs of triangles in
4 consists of either a single shared vertex or an entire common edge (see
Figure 14). Throughout this section, we reserve the symbol 4 for this special
type of tessellation.

Given such a conforming triangulation 4, we let G denote the space of
continuous, piecewise linear functions over 4. There is a natural association
between the vertices v1; : : : ;vJ of the triangles in 4 and the basis functions
B1�u�; : : : ;BJ�u� of G. To be more precise, we define Bj�u� to be the unique
function that is linear on each of the triangles in 4 and takes on the value
1 at vj and 0 at the remaining vertices in the partition. This collection of
tent functions is frequently used in the finite element method and is often the
starting point for defining multivariate splines of higher degrees [see Chui
(1988), de Boor (1987) and Farin (1986)].

Many of the important properties of this basis can be obtained from a lo-
cal representation of the tent functions. For the moment, consider a single
triangle δ ∈ 4 having vertices v1, v2 and v3. Relative to δ, the barycentric
coordinates of any point u = �u1; u2� ∈ R2 are defined as a triple ϕ�u� =
�ϕ1�u�; ϕ2�u�; ϕ3�u�� such that

u = ϕ1�u�v1 + ϕ2�u�v2 + ϕ3�u�v3 and ϕ1�u� + ϕ2�u� + ϕ3�u� = 1:

Casting these conditions into a simple set of linear equations we find that

�9:1�



v11 v21 v31

v12 v22 v32

1 1 1






ϕ1�u�
ϕ2�u�
ϕ3�u�


 =



u1

u2

1


:

Provided that δ has a nonempty interior, this system can be solved explicitly,
and the solution is best written in terms of the function SignedArea�v1;v2;v3�,

Nonconforming Partition Conforming Partition

Fig. 14. In a nonconforming partition, at least one vertex of a triangle in 4 falls along the interior
of an edge of another triangle in the partition.
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which we define by

SignedArea�v1;v2;v3� = 1
2

∣∣∣∣∣∣∣

v11 v21 v31

v12 v22 v32

1 1 1

∣∣∣∣∣∣∣
:

As its name suggests, the absolute value of SignedArea�v1;v2;v3� is just the
area of the triangle with vertices v1, v2 and v3. By applying Cramér’s method
to the set of equations (9.1) we find that ϕ1�u� is given by the ratio

�9:2� ϕ1�u� = ϕ1�u1; u2� =
SignedArea�u;v2;v3�
SignedArea�v1;v2;v3�

:

Thus, the barycentric coordinates are linear functions of u1 and u2, where
u = �u1; u2�, and satisfy the interpolation conditions

�9:3� ϕi�vj� =
{

0; i 6= j;
1; i = j; i; j = 1;2;3y

hence the vertices v1, v2 and v3 have barycentric coordinates �1;0;0�, �0;1;0�
and �0;0;1�, respectively. Furthermore, from (9.2) we see that the points on the
edge connecting v2 and v3 have barycentric coordinates of the form �0; α;1−α�,
α ∈ �0;1�.

Given the interpolation conditions (9.3) and the consequence of (9.2) that
the barycentric coordinate functions are linear functions of u, we now have
an explicit representation of the basis functions of G that correspond to the
vertices of δ; that is, for all u ∈ δ, Bi�u� = ϕi�u�, i = 1;2;3. As an immediate
consequence of this local (triangle by triangle) representation, we find that the
basis functions B1; : : : ;BJ associated with the triangulation 4 are bounded
between 0 and 1 and satisfy

B1�u� + · · · +BJ�u� = 1; u ∈ U:

From (9.2) it is also possible to demonstrate that, for any nonsingular, 2-by-2
matrix A and any vector b ∈ R2,

Bj�u� = B∗j�Au + b�; u ∈ R2;

where B∗1; : : : ;B
∗
J is the basis associated with vertices Av1 + b; : : : ;AvJ + b

of the transformed set U∗ = �Au + b;u ∈ U�. This means that models built
from functions in G have a natural invariance under affine transformations.
Using the barycentric coordinate functions, we will see in the next subsection
that this invariance carries over to our adaptive methodology as well.

To summarize, we have derived some of the essential properties of a basis
for the space of continuous, piecewise linear functions associated with a tri-
angulation 4 of U. An important observation here is that there is a simple
correspondence between the structure of the partition 4 and the basis func-
tions of G. As in the previous sections, this relationship will allow us to use
simple model selection criteria to construct a functional form of our estimate φ̂
of the unknown function φ. The only issue left to resolve is how we generalize
the notion of stepwise addition and deletion of knots in this context.
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Stepwise addition. The most natural way to proceed from one step to the
next in the stepwise addition procedure is to introduce a new vertex into the
existing triangulation, thereby adding one new basis function to the existing
spline space. This operation requires a rule for connecting this point to the
vertices in 4 so that the new mesh is also a conforming triangulation. In Fig-
ure 15, we illustrate three options for vertex addition: we can place a new
vertex on either a boundary or an interior edge, splitting the edge, or we can
add a point to the interior of one of the triangles in 4. Note that the space
obtained by adding a vertex v to an interior edge of a triangle δ ∈ 4 cannot
be achieved as the limit of spaces constructed by adding v to the interior of δ.
In this case, if v is very close to an edge of δ, the new triangulation is essen-
tially nonconforming and the associated space of linear functions G contains
elements that are discontinuous along that edge. Similar discontinuities arise
when the new point v is positioned extremely close to an existing vertex. De-
generacies such as these are encountered in the context of univariate spline
spaces when knots are allowed to coalesce [de Boor (1978)].

Splitting an Interior Edge

Original Triangulation

Subdividing a Triangle

Splitting Boundary Edge

Fig. 15. Three ways to add a new vertex to an existing triangulation. Each addition represents
the introduction of a single basis function, the support of which is colored gray.
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Given a triangulation 4, we construct a set of candidate vertices by consid-
ering the points with barycentric coordinates

�9:4�
(

k1

K+ 1
;

k2

K+ 1
;
K+ 1− k1 − k2

K+ 1

)

δ

; δ ∈ 4;

where k1, k2 and K are nonnegative integers satisfying k1 + k2 ≤ K+ 1 and
no coordinate equals 1. We have introduced a subscript δ to make it clear that
these points are calculated for each triangle in 4. At each step in the addition
process, we select from this set of candidate vertices the point that maximizes
the Rao statistic described in Section 3. Stability considerations may dictate
that we do not consider for addition vertices in areas where there is little data.
Moreover, we have found it useful to avoid creating triangles having one or
two very small angles. Restrictions such as these are easily incorporated into
the stepwise addition procedure.

Stepwise deletion. There are two possible strategies for reducing the di-
mension of an existing piecewise linear spline space. In each case, we enforce
the condition that a function in the space be continuously differentiable across
a given edge in the existing triangulation. Observe that a continuous, piece-
wise linear function has continuous partial derivatives across an edge if and
only if the function is linear on the union of the two triangles that share
the edge. Using the correspondence between vertices and basis functions de-
scribed above, we can show that the subspace of spline functions satisfying
this condition is characterized by a simple linear constraint of the type dis-
cussed in Section 3. In each of the examples in Figure 15, enforcing continuity
of the first partial derivatives across any of the gray edges is equivalent to
removing the added vertex, returning us to the original partition in the upper
left corner of the figure. Thus, in light of the stepwise knot deletion strategy
discussed in the previous sections, one procedure for stepwise deletion in the
bivariate context involves using the Wald statistic to choose between conti-
nuity constraints across edges that fall into one of the three categories listed
in Figure 15. An alternative deletion procedure is somewhat more aggressive
and involves choosing from among all the continuity constraints, regardless
of how the edge is positioned relative to the other edges in the partition. The
important distinction between these two procedures is that only in the first
case are we actually guaranteed that the structure of 4 is simplified at each
step.

9.3. Bivariate logspline density estimation.
Maximum likelihood estimation. While the bivariate methodology intro-

duced in the previous paragraphs has been implemented for a variety of ex-
tended linear models, we will focus mainly on logspline density estimation. In
this context, we choose to model the logarithm of an unknown density φ of a
random vector U as a bivariate spline. For ease of presentation, we restrict our
attention to densities that are supported on a simply connected region U ∈ R2

having a polygonal boundary. As usual, let 4 denote a conforming partition of
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U and let B1�u�; : : : ;BJ�u� denote the basis functions of the corresponding
space G of continuous, piecewise linear functions over 4.

Given a vector b = �β1; : : : ; βJ� ∈ RJ, we can define a density f�uyb� over
U having the form

f�uyb� = exp
(
β1B1�u� + · · · + βJBJ�u� −C�b�

)
;

where

C�b� = log
∫

U
exp

(
β1B1�u� + · · · + βJBJ�u�

)
du

is the normalizing constant. Based on a random sample U1; : : : ;Un from the
distribution of U, we estimate φ by the function φ̂ = f�uy b̂�, where b̂ max-
imizes the “log-likelihood” l�b� = log f�U1yb� + · · · + log f�Unyb�. While we
do not believe that l�·� is the true log-likelihood function corresponding to our
sample, we know from the discussion at the beginning of this section that as
n→∞, φ̂ tends to φ.

As in univariate logspline density estimation (see Section 4), the likelihood
equations take on the very simple form

�9:5� EbBj�U� = EnBj�U�; 1 ≤ j ≤ J;
where

EbBj�U� =
∫

U
Bj�u�f�uyb�du and EnBj�U� =

1
n

n∑
i=1

Bj�Ui�:

Since the functions Bj are piecewise linear over U, it is possible to evaluate
the required integrals exactly. As in previous sections, the equations in (9.5)
are solved using Newton–Raphson iterations. To obtain the Hessian matrix
required for this procedure, we must also calculate expressions of the form
Eb�Bj1

�U�Bj2
�U�� for 1 ≤ j1; j2 ≤ J. Since the basis functions are piecewise

linear, however, we again do not require numerical quadrature to carry out
these computations.

Implementing stepwise addition and deletion. Recall that we add basis
functions to G by adding vertices to 4 and that our strategy for choosing
between the competing basis functions is based on the heuristic maximiza-
tion of Rao statistics. This process can be simplified considerably by making
explicit use of the barycentric coordinate functions discussed above. For ex-
ample, suppose that we want to add a node v inside δ, the right-hand triangle
in Figure 16. Once again, suppose that δ has vertices v1, v2 and v3 and let
ϕ1�u�, ϕ2�u� and ϕ3�u� denote the barycentric coordinates of a point u ∈ R2

relative to δ. Now, if we let B1�u�, B2�u� and B�u� represent the piecewise
linear basis functions associated with the points v1, v2 and v in the updated
triangulation, then it is straightforward to demonstrate that, for all points u
in the shaded triangle on the right in Figure 16,

ϕ1�u� = B1�u� + ϕ1�v�B3�u�; ϕ2�u� = B2�u� + ϕ2�v�B3�u� and

ϕ3�u� = ϕ3�v�B3�u�:
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Original Triangulation

1

3

2

Updated Triangulation

1

3

2

Fig. 16. Adding a new vertex at the point v = ϕ1�v�v1 + ϕ2�v�v2 + ϕ3�v�v3. In this case, we are
adding to G the continuous, piecewise linear function that takes on the value 1 at the point v and
0 at each of v1; v2 and v3.

Combining these relationships with the fact that within δ, the piecewise lin-
ear basis functions associated with v1, v2 and v3 are exactly the barycentric
coordinate functions relative to δ, we arrive at simple formulas for calculating
the necessary inner products and empirical moments that go into forming the
Rao statistic for adding v to the partition 4. Similar expressions can be de-
rived for evaluating the candidate function over the remaining two triangles
in the right plot of Figure 16. In the numerical example discussed below, we
introduce vertices at the points corresponding to K = 5 in expression (9.4).

Using these ideas, we can also derive a simple procedure for determining
the constraint that a function in G be continuously differentiable across a
given edge in 4. To make this more precise, consider the triangulation on
the left in Figure 17 and let ϕ1�u�, ϕ2�u� and ϕ3�u� denote the barycentric
coordinates of a point u ∈ R2 relative to the triangle with vertices v1, v2 and
v3. Given a function g ∈ G, let β1, β2 and β3 denote the coefficients of the
basis functions associated with these vertices. Then for all points u in this
triangle, g�u� is the linear function given by β1ϕ1�u� + β2ϕ2�u� + β3ϕ3�u�.
Now, if we let β4 denote the coefficient of the basis function of G associated
with the vertex v4, then g�v4� = β4. Therefore, the function g is linear on the

Deleting an Edge

1

3

2

4
Deleting a Vertex

1

4

3

2

Fig. 17. The effect of enforcing the constraint that functions in G be continuously differentiable
across edges in two triangulations.
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union of the two triangles in the left portion of Figure 17 provided that

β4 = g�v4� = β1ϕ1�v4� + β2ϕ2�v4� + β3ϕ3�v4�:
By swapping the roles of v1 and v4 in this argument, we find thatC1 continuity
of a function g ∈ G can also be assured by the constraint

β1 = g�v1� = β2ϕ̃2�v1� + β3ϕ̃3�v1� + β4ϕ̃4�v1�;
where ϕ̃2�u�, ϕ̃3�u� and ϕ̃4�u� denote the barycentric coordinates of a point u
relative to the triangle with vertices v2, v3 and v4. It is not hard to demon-
strate that these two constraints are equivalent up to a multiplicative con-
stant. Observe, however, that when this condition is enforced, we are left with
a single linear function over the pair of triangles that constitute 4, but we
have not produced a simpler triangulation in the process.

Suppose instead that we want to remove the vertex v4 in the middle of the
triangle in the right portion of Figure 17. Given g ∈ G and 1 ≤ i ≤ 4, we again
let βi correspond to the coefficient of the basis function associated with the
vertex vi. It can be shown that each of the C1 continuity constraints across
the shaded interior edges shown in the figure is of the form

�9:6� β4 = ϕ1�v4�β1 + ϕ2�v4�β2 + ϕ3�v4�β3;

where ϕ1�u�, ϕ2�u� and ϕ3�u� are the barycentric coordinates of a point u
relative to the outer triangle in Figure 17. Observe that the expression on the
left is the value at v4 of the unique linear function interpolating β1, β2 and
β3 at the points v1, v2 and v3, respectively. Recalling that g�v4� = β4, we see
that the constraint in (9.6) has considerable intuitive appeal.

9.4. An example. We end our discussion of bivariate logspline density es-
timation with an example suggested to us by Karl Broman. The points in the
left panel of Figure 18 represent a collection of amino acids obtained from
100 protein structures taken from the Brookhaven Protein Data Bank [see
Hobohm, Scharf, Schneider and Sander (1992)]. In order to characterize the
local environment of each amino acid within a given protein structure, three
pieces of information were recorded: the local structure of the protein at the
given amino acid (whether the protein is twisting around a helix, for exam-
ple), the fraction of the amino acid side-chain area that is buried in the protein
structure and the fraction of the side-chain area that is covered by polar atoms.
Because the unburied portion of the amino acid is exposed to a polar solvent,
the final two quantities are restricted to the upper triangle of the unit square.
In Figure 18, for example, we plot these two measurements for all of the oc-
currences of the amino acid lysine for which the local protein structure is a
helix.

Bivariate density estimates computed for each amino acid and each local
protein structure are the basis for an approach to solving the so-called in-
verse folding problem [see Bowie, Luthy and Eisenberg (1991) and Zhang and
Eisenberg (1994)]. Evaluating the structure of a given protein is extremely
difficult. Determining the sequence of amino acids that comprise the protein,
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o

o

o
o

o

buried

polar

helix

Fig. 18. Applying the density estimation routine. In the top row we present the data and both the
triangulation obtained from stepwise addition �thin, dashed line� and that obtained from stepwise
deletion �thick, solid line�. In the bottom row we present the data along with a contour plot of the
final fit from the deletion process.

however, is relatively simple. It would seem reasonable, therefore, to attempt
to infer the protein’s structure from its amino acid sequence. Unfortunately,
many rather different sequences produce very similar structures, so the objec-
tive of the inverse folding problem is to determine which amino acid sequences
might result in a given known structure. This can be accomplished by studying
the propensity for certain amino acids to occur in certain local environments
in a large collection of known protein structures. The procedure described by
Zhang and Eisenberg involves a log-odds calculation, the main ingredient of
which is a set of bivariate density estimates for the type of data given in
Figure 18.

In the bottom panel of Figure 18, we present a contour plot of the density es-
timate obtained by stepwise addition followed by stepwise deletion. The model
shown was encountered during stepwise deletion and attains the minimum
BIC value among all the models obtained during both the stepwise addition
and deletion processes. During this process, we selected candidate knots cor-
responding to K = 5 in (9.4), and did not consider any new vertices that would
result in a triangle containing fewer than 25 points. In the panel on the upper



EXTENDED LINEAR MODELING 1423

right in the same figure, we present the final triangulation along with dashed
edges to indicate the additional structure present when the stepwise deletion
process began. The fits as well as the various plots in Figure 18 were produced
using a library of S/S-PLUS routines that are available from Hansen.

In this section we have introduced a method for bivariate density estimation
using piecewise linear, bivariate splines based on an adaptively constructed
triangulation. We have also implemented this procedure for both regression
and generalized regression. The resulting estimates, which we have named
Triograms, have performed well on a variety of of bivariate data sets taken
from a number of different estimation contexts. The interested reader is re-
ferred to Hansen, Kooperberg and Sardy (1996), where Triograms are com-
pared to several existing function estimation routines. One advantage that
Triograms have over these other methods is that the entire estimation pro-
cedure is invariant under affine transformations and is the most natural ap-
proach for modeling data when the domain of the predictor variables is a
polygonal region in the plane. As anticipated by the convergence rate derived
at the beginning of this section, if our underlying function φ is smooth, piece-
wise linear estimates are suboptimal. This problem can be corrected by using
higher-order splines, and we are currently investigating how to extend the
Triogram procedure to make use of the generalized vertex splines of Chui and
He (1990).
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I would like to congratulate Stone, Hansen, Kooperberg and Truong for suc-
cessfully outlining an ingenious principle on flexible statistical modeling. This
principle is convincingly and successfully applied to a wide array of statistical
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problems. The availability of the software allows users to easily explore subtle
nonlinear structure, which was unthinkable a decade ago. My perception is
that the principle outlined in this seminal work will be widely used.

I like the name “extended linear modeling.” In addition to the reasons given
in the Introduction, the extended linear modeling emphasizes its continuity
to parametric linear models and spells out clearly that the boundary between
nonparametric and parametric modeling is moot. I heard a misperception that
nonparametric modeling requires a very large amount of data. In Figure 2,
the authors demonstrated that the approach can still be very useful when
the number of observations is small, bearing in mind that there are many
models that are indistinguishable for a small sample. The appeal of data-
analytic (nonparametric) modeling is to reduce modeling biases via enhancing
modeling flexibility. A satisfactory model should trade off the balance between
the flexibility and estimability.

1. Basis mining. The basic idea of Stone’s school stems from the variable
selection of linear models. The concavity of likelihood modeling is stressed.
The innovation is the use of the Rao statistics for adding variables and the
Wald statistics for deleting variables. Using these techniques along with the
celebrated concept of allowable spaces for interpretability, the intensive basis
mining is avoided via some additional heuristics. The triumph of the algorithm
is that it makes large and nearly ill-conditioned computing problems feasible.

I am puzzled why such a heuristic approach works out so well. I wonder
whether the initial placement of equally spaced knots can be too reluctant to be
deleted so that even better knots cannot be recruited. Why does the stepwise
addition algorithm not start with zero initial knots in the program such as
LOGSPLINE? There is always a risk that with poor choice in initial knots,
poorly recruited new knots and additional errors of the knots deletion process,
a suboptimal selection of bases is obtained. The traditional stepwise (addition
and deletion) algorithms in the linear models can be used to improve the knot
selection process. This algorithm can be expensive given the complexity of
the current problems. However, computing cost can be reduced if a stepwise
deletion algorithm is turned on when recruiting a few new variables.

2. Inference tools. One advantage of classical parametric models is that
their parameters admit some clear interpretations. Standard errors of the es-
timated parameters can easily be computed. For the extended linear mod-
eling, while the values of “standard errors” are available at the final model,
they do not necessarily admit the conventional interpretation because of “data
snooping” and possible modeling bias. The selected basis functions can vary
from simulation to simulation. This makes confidence statements hard to con-
struct. A less ambitious question is how large should the “t-statistic” be in or-
der to have 95% confidence that a coefficient is significantly away from zero. A
rough answer can be gained from the empirical experiences via extensive sim-
ulations. Despite the above technical difficulties, normalization of estimated
coefficients gives us some vague ideas about the relative importance of each
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selected basis. The estimated coefficients in Table 6, for example, are not nor-
malized. The variable �111− t�+ is on a smaller scale than that of �562− t�+,
but they are hard to compare with the variables such as “age.”

The above remarks have no intention of criticism. Most nonparametric
methods face the same challenge. Constructing confidence bands (or point-
wise confidence intervals) provides important inferential information, but is a
challenging subject. In the univariate setting, Fan, Farmen and Gijbels (1997)
outlined a general and simple principle for assessing biases and variances
for the local polynomial modeling in likelihood-based models. See also Section
4.9 of Fan and Gijbels (1996). For nonparametric regression, confidence bands
can be constructed along with the ideas in Eubank and Speckman (1993). For
additive and interaction models, the developments remain to be done.

3. Model diagnostics. Does a model adequately fit the data? Traditional
linear models rely on residual plots. The judgment can vary from person to
person. These residuals are also available from the extended linear modeling.
Here, I would like to describe a method which can be useful for any model
fitting, including extended linear modeling. For simplicity, I use the regression
setup to outline the idea.

Suppose that we have data �X1;Y1�; : : : ; �Xn;Yn� generated from the model

Yi =m0�Xi� + εi:

Let m̂�·� be the regression surface fitted by a method and let ε̂i = Yi − m̂�Xi�
be the residuals. Let m�x� be a function that the fitting method intends to
estimate. In the linear regression case, m�x� is simply the best linear approx-
imation to the regression surface m0�x�. Plotting residuals against a covari-
ate variable or an index sequence amounts to visualizing whether the bias
m�·� −m0�·� is negligible in a given direction in the presence of noise. This is
not an accurate device because a bias of one-third (say) of the noise level of ε
can hardly be detected.

Our idea is simple. If a fit is good, then the residuals should have nearly
zero biases. Let �ε̂∗i� be the Fourier transform of the residual vector �ε̂i� or-
dered from low to high frequencies. This compresses useful signals into low
frequencies and hence the dimensionality is reduced. Compute the adaptive
Neyman test statistic

T∗AN = max
1≤m≤n

{(√
σ̂2

2m
)−1 m∑

j=1

�ε̂∗2j − σ̂2
1 �
}
;

which is the maximum of the normalized partial sum process, where σ̂2
1 and

σ̂2
2 are, respectively, the sample standard deviations of �ε̂∗i ; i = �n/2�; : : : ; n�

and �ε̂∗2i ; i = �n/2�; : : : ; n�. The reason for only using the high-frequency
components to compute the sample variances is that their means are nearly
zero. See Fan (1996) for a motivation of the adaptive Neyman test statistic.
Reject the null hypothesis that the biases are negligible if T∗AN is too large.
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Let

TAN =
√

2 log log nT∗AN −
{
2 log log n+ 0:5 log log log n− 0:5 log�4π�

}

be the normalized form. Then, asymptotically,

P�TAN > x� → exp�− exp�−x��:
Because the class of alternative models is large, we would not reject the null
hypothesis unless we had overwhelming evidence. This translates into choos-
ing a small significance level α. If α = 1%, the asymptotic critical value is
about 4:6, but our simulations show that for reasonable sample sizes this cor-
responds to α = 2:5%. In conclusion, TAN larger than 4:6 is the evidence of
lack of fit.

The above method depends on the ordering of the residual sequence �ε̂i�.
What is a useful ordering scheme? Let us decompose

ε̂i =m0�Xi� −m�Xi� + εi + �m�Xi� − m̂�Xi��:
Assume that the last summand is negligible. Then it is clear from Theorem
2.2 of Fan (1996) that the power depends on

∑n
i=1�m0�Xi�−m�Xi��2 (which is

independent of ordering) and the smoothness of the sequence �m0�Xi�−m�Xi��
indexed by i. In other words, a powerful ordering is the one that makes the
sequence �m0�Xi� −m�Xi�� smooth. Since m�·� is unknown, a good ordering
scheme is to make two consecutive covariates have close distance. One possible
ordering scheme is according to the diagonal projection of the standardized
covariates �6̂−1/2Xi�T1, where 6̂ is the sample standard deviation and 1 is a
vector whose elements are all 1. Another possible scheme is to project Xi in
a few important principal axes. Let λj and αj be the jth largest eigenvalue
and its associated eigenvector of the covariance matrix of 6̂. Let

si =
j0∑
j=1

λ
1/2
j XT

i αj;

where j0 is the value such that 80% (say) of variability is explained by the
first j0 principal axes. Then, order the residuals according to the scores si
before using the adaptive Neyman test.

The last paragraph attempts to search for a good direction for ordering
the residuals. Of course, we can choose any sensible direction to order the
residuals or combine the test statistics in a few important directions.

4. Constrained models. The extended linear modeling has been success-
fully applied to a wide array of statistical problems. It is handy to use when one
wants to model completely unknown functions. However, some extra thoughts
are needed when it is applied to constrained models. Here I outline two prob-
lems.

Consider first the semiparametric model

Y = g�XTβ1; : : : ;X
Tβp; ε�
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in Li (1991). One can easily use a local modeling technique to solve this prob-
lem. The essence of sliced inverse regression (SIR) is to extract the directions
by using the inverse regression E�X�Y� − E�X� via cutting variable Y into
slices. See Li (1991) for details. The forward regression method is to use the
idea of average directives. See for example Härdle and Stoker (1989) for the
case p = 1. Let m�x� = E�Y�X = x� be the regression surface. Then its gradi-
ent ∇m�x� can directly be estimated by local linear regression. This yields a
crude estimator ∇̂m�x� with small biases and possibly large variances. Now
average the derivative estimate to stabilize the variance. Let

β̂w = n−1
n∑
i=1

∇̂m�Xi�w�Xi�;

where w is a given function. Taking p independent functions w yields p inde-
pendent directions whose linear span is a root-n consistent estimator of the
space spanned by the directions β1; : : : ; βp. An alternative method is to extract
the directions via a principal component analysis of the weighted covariance
matrix of �∇̂m�Xi��. See for example Wong and Shen (1996).

Direct expansion of g into polynomial spline space and maximizing the
resulting likelihood can be difficult. Backfitting algorithms in Hastie and Tib-
shirani (1990) can be used to iteratively estimate the parametric component
β1; : : : ; βp and the nonparametric component g via polynomial splines. How-
ever, the concavity structure of the likelihood will no longer be available and
the success of this schematic implementation remains to be seen.

Next consider the constrained model

Y = f1�X1� + · · · + fp�Xp� + ZTβ+ ε; fj monotone;

where X1; : : : ;Xp and Z are given covariates. It is conceptually simple to
handle this problem via the smoothing spline approach. Find f1; : : : ; fp and
β that minimize

n−1
n∑
i=1

{
Yi − f1�Xi1� − · · · − fp�Xip� − ZTi β

}2 +
p∑
j=1

∫
λj�f′′j�t��2 dt

subject to constraints that fj is monotone. See Green and Silverman (1994). Of
course, the solution to this problem is not trivial. The local regression approach
to this problem can also easily be formulated. Take the local constant modeling
as an example. One minimizes

∫
n−1

n∑
i=1

{
Yi − f1�x1� − · · · − fp�xp� − ZTi β

}2
Kh�Xi − x�w�x�dx

subject to the constraints that fj is monotone, where K is a given kernel
function and w is a given weighting scheme. The solution to this can be found
when w and K are in product form. See the last paragraph of our Section 5.

The polynomial spline approach can in principle be used to handle this
problem. One needs to expand fj into spline bases and optimize the parame-
ters subject to appropriate constraints. The constraints are nontrivial and can
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be nonlinear. Additional difficulty arises whenever adding or deleting a knot
because new constraints have to be set in force. New heuristics are needed.
This includes setting simpler constraints at the expense that the resulting
“allowable space” is only a subset of monotone function space.

5. Theoretical considerations and average regression surface. The
polynomial spline estimators have been shown to possess the optimal rates
of convergence in various statistical contexts by various subsets of the au-
thors. Their implementations with knot addition and deletion yield appeal-
ing methodology. However, proving the sampling properties of the resulting
method poses a challenge to the theoretical school. Carefully designed simula-
tion studies can provide valuable insights into complex procedures and serve
as a useful criterion. Another possible criterion, as the authors indicated, is
that “the true measure of any statistical procedure is its performance on real
data.” While this criterion can be subjective, its emphasis on practical use is
greatly appreciated.

Can theoretical studies provide useful practical relevance? Consider the
additive model

Y = f1�X1� + f2�X2;X3� + ε;
where X1 and X2 are continuous variables of dimension p and q, respectively,
and X3 is a discrete random vector. While the dimensionality of X2 can be
much larger than that of X1, the function f1 can be estimated as well as in
the case that f2 is known in terms of asymptotic biases and variance [Fan,
Härdle and Mammen (1995)]. This gives a theoretical endorsement to the ad-
ditive and lower order interaction modeling in the sense that not knowing the
components f2 does not asymptotically cost us anything to estimate f1. This
valuable theoretical insight can hardly be understood without a foundational
device.

Another important aspect of this theoretical study is that it yields a prac-
tical methodology. The basic idea is to directly estimate the nonparametric
regression surface m�x1;x2;x3� = E�Y�X1 = x1;X2 = x2;X3 = x3� via a lo-
cal linear regression. Let m̂�x1;x2;x3� be the resulting estimator. Then, use
averaging to stabilize the variance, resulting in

f̂1�x� =
n∑
i=1

m̂�x1;X2i;X3i�w�X2i;X3i�:

This averaging surface method avoids an iterative estimation scheme and is
asymptotically efficient with a suitable choice of weight w. It is also applicable
to the additive partial linear model

Y = f1�X1� + · · · + fp�Xp� + ZTβ+ ε:
Each additive component fj can efficiently and directly be estimated and a
root-n consistent estimator of parameter β can be obtained via fitting the
residuals Y − f̂1�X1� − · · · − f̂p�Xp� on Z. See Fan, Härdle and Mammen
(1995) for details.
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How robust is the above approach to the model misspecification? In Stone
(1994), it is argued that the polynomial spline estimator will estimate the best
additive approximation to the underlying regression curve. A similar result
holds: the averages of the regression surface

f∗j�xj� =
∫
�m�X1; : : : ; xj; : : :Xp� − µ∗�

∏
i6=j
wi�Xi�dXi;

with µ∗ =
∫
m�X1; : : : ;Xp�

∏
iwi�Xi�dXi, minimize

∫ {
m�X1; : : : ;Xp� − µ− f1�X1� − · · · − fp�Xp�

}2∏
i

wi�Xi�dXi

subject to the usual identifiability constraints. A similar result holds for the
best “interaction model” approximation:

µ+
∑
i

fi�Xi� +
∑
i<j

fi; j�Xi;Xj�:

Each term above can be represented as the average of the regression surface
and can directly be estimated.

6. Local modeling versus global modeling. Extended linear modeling
expands unknown functions into a spline basis, resulting in potentially large
parametric models. This global modeling approach aims at capturing nonlin-
earity and reducing modeling bias. Similar objectives also can be achieved via
local modeling: in a local neighborhood around a given point, a polynomial
(usually linear or quadratic) function is fitted to the data. The size of the
neighborhood or bandwidth is used to control biases and variances of the re-
sulting estimators. This method is also applicable to most statistical problems
in this paper. See Fan and Gibjels (1996) for details.

Like most tools, both methods have their own merits. Various discussions on
this have already appeared in previous sections. First of all, both approaches
include traditional linear models as their submodels. Computationally, the
global modeling method solves one or many (depending on whether knots are
adaptively chosen) large parametric likelihood problems, while the local mod-
eling approach solves many small parametric (usually two or three param-
eters) problems. Depending on the implementations and efforts of exploring
the data, both methods can be implemented at comparable computing cost.
Typically, spline estimates give visually appealing estimated functions, while
the local modeling method can be very flexible via varying bandwidths. Local
data can often be homoscedastic. Hence, the effect of heteroscedasticity is au-
tomatically reduced via the local modeling approach. For boutique problems
in Section 4, local modeling offers a natural solution, while for a problem as
large and complex as in the phoneme recognition example the solution based
on the local modeling approach remains to be seen.

The local polynomial regression as a convenient technical tool dates back at
least to Stone (1977). One can use this device to gain some technical insights.
A convincing example of this is given in the last section. Asymptotic pointwise
minimaxity (rates and constants) can be obtained from the local polynomial
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fitting. Their sampling properties such as bias and variance and asymptotic
distributions can be derived. Estimators of their biases and variances can
easily be formulated.

The global modeling and the local modeling approach both have strengths
in their own domain of applications. Together they provide invaluable tools
for nonlinear data analyses and foundational insights.
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DISCUSSION

Chong Gu

Purdue University

Stone, Hansen, Kooperberg and Truong are to be congratulated for their fine
article summarizing the adaptive regression spline approach to nonparametric
function estimation. With the unified asymptotic theory, the successful appli-
cations to a broad spectrum of problems and the availability of user-friendly
software, the developments present very impressive achievements that leave
many people envious.

Comprehensive and coherent as the authors’ treatment is, there still exists
an alternative approach that can achieve about as much. This other approach
is the penalized likelihood method, pioneered by Good and Gaskins (1971)
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and extensively developed over the years by the Wisconsin spline school led
by Wahba. My mandate here is to present in a nutshell what has been going
on with this alternative line of research, and to provide some comparative
comments where fit.

In Sections 2, 3 and 4, I will briefly describe what one can do with the
penalized likelihood method. Before that, a bit more discussion of the analysis
of variance (ANOVA) decomposition is presented in Section 1, which plays
a pivotal role in many of the subsequent developments. Brief comparative
comments appear here and there as we move along. Further thoughts on model
selection are collected in Section 5.

1. ANOVA decomposition. Let us first look at a generic construction of
ANOVA decomposition of functions on arbitrary product domains, one that
does not involve the notion of inner product. Despite its extensive applica-
tion in recent developments of the penalized likelihood method, that to some
may seem to tie it with the specific method, the construction does have its
independent conceptual identity.

Consider a function φ�x1; : : : ; xM� on a product domain
∏M
m=1 Xm. Let Am

be averaging operators acting on arguments xm that satisfy A2
m = Am. An

ANOVA decomposition of the function can be defined as

φ =
{ M∏
m=1

�I−Am +Am�
}
φ

=
∑

S ⊆�1;:::;M�

{ ∏
m∈S
�I−Am�

∏
m∈S c

Am

}
φ

=
∑

S ⊆�1;:::;M�
φS ;

(1.1)

where S is the index set of active arguments in a component. φ\ =
�∏M

m=1Am�φ is a constant, φm = φ�m� = ��I − Am�
∏
l6=mAl�φ are the xm

main effects, φm; l = φ�m; l� = ��I−Am��I−Al�
∏
k6=m; lAk�φ are the xm-xl

interactions, and so on. The identifiability of such a decomposition is assured
by the side conditions AmφS = 0, ∀S 3 m. The decomposition can also be
obtained through recursive hierarchical construction.

For Xm = �a; b� a real interval, one may choose Amφ = �b− a�−1
∫ b
aφdxm

or Amφ = φ�a�, anything that satisfies A2
m = Am.

For Xm = �1; : : : ;K� a discrete domain, one may choose Amφ =
K−1∑K

xm=1φ�xm� or Amφ = φ�1� and so forth.
For Xm logically univariate but mathematically multivariate such as the

geography, one does not need to decompose things further into say the longi-
tude effect and the latitude effect that do not always make practical sense. A
possible choice for the averaging operator is Amφ =N−1∑N

j=1φ�xj;m�, where
xj;m ∈ Xm provide a “normalizing mesh” on the domain.

Technically, the decomposition of (1.1) can be constructed explicitly using
the tensor product spline technique based on the construction of tensor prod-
uct reproducing kernel Hilbert spaces, with possibly a mixture of continuous,
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discrete, univariate or multivariate marginal domains. Technical details can
be found in Aronszajn (1950), Wahba (1990) and other references to follow
throughout this discussion. For the cursory exposition in this discussion, the
reader only needs to know that the components can be independently attached
or detached in the construction. For example, on X1×X2, one may well choose
to consider only functions of the form φ = φ1 + φ1;2, with the constant and
the x2 main effect eliminated. The decomposition obviously is dependent on
the choices of Am, which are usually based on the ease of interpretation or
implementation.

Aside from the asymptotic theory, the ANOVA decomposition does not seem
to play much of a role in the authors’ treatment. For one thing, the authors
do not seem to get an explicit ANOVA decomposition from their fit, which
can be useful in the interpretation of the fit. Also, a mechanism to enforce
selective exclusion of certain interaction terms would be very useful, if one is
not already at work.

2. Penalized likelihood function estimation. The penalized likelihood
estimate of a function φ can be defined by the minimizer of

L�φ�data� + �λ/2�J�φ�;(2.1)

where L�φ�data� is usually the minus log-likelihood that measures the
goodness-of-fit of φ to the data, J�φ� often is a quadratic functional that
measures the roughness of φ and λ is a tunable smoothing parameter that
balances the two conflicting goals of goodness-of-fit and smoothness. The
minimizer of (2.1) is sought in a function space H in which J�φ� <∞. For φ
on a product domain, the ANOVA decomposition of (1.1) can be built into the
procedure via modular constructions of H and J using the tensor product
spline technique. A penalized likelihood estimate is also called a smoothing
spline.

Regression. Consider response data from exponential family distributions
Y�x ∼ exp��yφ�x� − b�φ�x���/σ2 + c�y;σ2��, where the dependence of the
canonical parameter φ on the covariate x is to be estimated and the possi-
bly unknown nuisance dispersion parameter σ2 is assumed common to all
observations. Based on observed pairs �xi;Yi�, φ is estimated by minimizing

− 1
n

n∑
i=1

{
Yiφ�xi� − b�φ�xi��

}
+ λ

2
J�φ�;(2.2)

where σ2 is absorbed into λ.
For φ the normal mean, (2.2) reduces to the classical penalized least squares

procedure. Other common examples include φ the logit for binary data and φ
the log intensity for Poisson data. The general formulation of (2.2) appeared
in the literature no later than O’Sullivan, Yandell and Raynor (1986).

The covariate x resides on a generic domain X , which, in particular, can
be a product domain with a mixture of marginals. Unified numerical and
theoretical treatments have been developed over the years; further discussion
can be found in the next two sections.
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Some of the recent developments in regression include diagnostics for alias-
ing or negligible terms in an ANOVA decomposition [Gu (1992a)], the incorpo-
ration of multivariate marginals in an ANOVA decomposition [Gu and Wahba
(1993a)], interval estimates for the individual terms of an ANOVA decompo-
sition [Gu and Wahba (1993b); Wahba, et al. (1995); Wang and Wahba (1995)]
and the treatment of dependent observations and longitudinal data [Wang
(1996a, b)].

Interval estimates seem to be lacking in the authors’ treatment of regression
even for the function φ itself.

Density estimation. Based on independent samples Xi from a probability
density f�x� on a domain X , one may write f = eφ/

∫
X eφ, known as a logistic

density transform [Leonard (1978)], and estimate φ by minimizing

− 1
n

n∑
i=1

{
φ�Xi� − log

∫
X
eφ
}
+ λ

2
J�φ�:(2.3)

To make the logistic density transform one-to-one, one may enforce a side
condition Aφ = 0 with some averaging operator A on X [Gu and Qiu (1993)],
as the authors also do. This can be done by the elimination of the constant
term in an ANOVA decomposition, possibly one-way.

When X is a product domain, selective inclusion/exclusion of the ANOVA
terms may be employed to incorporate (conditional) independence structures
of the marginals, providing a means to the nonparametric fitting of certain
graphical models [cf. Whittaker (1990)]. When X consists of only a portion
of a product domain due to sampling truncation, such as in the protein data
example in Section 9.4 of the paper under discussion, the ANOVA structure
can be used to enforce pretruncation independence of the marginals, if desired.

Further details can be found in Gu and Qiu (1993) and Gu (1993, 1997).
Earlier work on univariate density estimation can be found in Good and Gas-
kins (1971), Leonard (1978), Silverman (1982), O’Sullivan (1988a) and Cox
and O’Sullivan (1990).

Conditional density estimation and polychotomous regression. Now con-
sider a product domain X ×Y , with both marginals generic. Observing pairs
�xi;Yi�, the objective is to estimate the conditional probability density f�y�x�.
Write the joint density as

f�x;y� = exp�φx +φy +φx;y�∫
X ×Y exp�φx +φy +φx;y�

;(2.4)

where an ANOVA decomposition is explicitly spelled out and the constant term
is trimmed for a one-to-one logistic density transform. The conditional density
is easily seen to be f�y�x� = exp�φy +φx;y�/

∫
Y exp�φy +φx;y�. This can be

written as f�y�x� = eφ/
∫

Y e
φ, with side conditions Ayφ = 0, ∀x, where Ay is

the averaging operator on domain Y that helps to define the ANOVA decom-
position. The side conditions ensure a one-to-one logistic conditional density
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transform. The penalized likelihood estimation of f�y�x� is then through the
minimization of

− 1
n

n∑
i=1

{
φ�xi;Yi� − log

∫
Y

exp�φ�xi; y��
}
+ λ

2
J�φ�(2.5)

in a function space with Ayφ = 0.
While the conditional density can be derived from the joint density esti-

mated from random pairs �Xi;Yi� via (2.3) [with X in (2.3) replaced by
X × Y ], the use of (2.5) is necessary when observations on the X domain
are considered “fixed,” as in a typical regression setting.

Unlike the regression procedure (2.2), which assumes a parametric model
on the Y axis and estimates a parameter φ “univariate” in x, the present
procedure estimates a “bivariate” function nonparametrically on both axes.
The words “univariate” and “bivariate” are put in quotes for x (and y) can
itself be multivariate in a hierarchical structure.

For Y a real interval, the procedure gets conditional mean and conditional
quantiles all at once, without ever running into the quantile crossover problem
that may trouble methods which target individual quantiles separately.

For Y discrete, (2.5) naturally reduces to a procedure for nonparametric
polychotomous regression. When the class number is 2, the method reduces
to exactly what one would get by applying (2.2) to Bernoulli data.

Further details can be found in Gu (1995a).

Density estimation under sampling bias. Distribution data may not always
come from the generating density directly, and they may actually come from
a variety of sources. The penalized likelihood method provides a convenient
way to combine information in the estimation process.

Observing Xi on X from a density proportional to f�x�wi�x� with wi�x�
known, the estimation of f = eφ/

∫
X eφ is simply through the minimization of

− 1
n

n∑
i=1

{
φ�Xi� − log

∫
X
wie

φ

}
+ λ

2
J�φ�:(2.6)

Ordinary samples, length-biased samples, randomly truncated samples or a
mixture of these are among those covered by (2.6). Further details can be
found in Gu (1992b).

On a product domain X ×Y , one sometimes collects data from the “wrong”
conditional density f�x�y�, but is interested in aspects of the other conditional
density f�y�x�. This is the case with (unmatched) case-control studies in bio-
statistics and choice-based sampling in econometrics, collectively known as
response-based sampling. When information comes only from f�x�y�, (2.5) can
be used, with x and y interchanged, to estimate φx and φx;y, where φx and
φx;y are as in (2.4). The odds ratio that interests most is characterized by φx;y.
When supplemental information concerning the joint density is also available,
such as in an enriched choice-based sample [cf. Cosslett (1981)], a simple mod-
ification of (2.5) combines all relevant information and all three terms φx, φy
and φx;y are estimable. Further details can be found in Gu (1996a).
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Hazard estimation. Let T be the lifetime of an item with a survival func-
tion S�t; u� = P�T > t�u� and hazard function eφ�t; u� = −∂ logS�t; u�/∂t,
where u is a covariate. Let Z be the left truncation time and let C be the right
censoring time, independent of T and of each other. Observing �Zi;Xi; δi;Ui�,
where X = min�T;C�, δ = I�T≤C� and Z < X, one may estimate φ by mini-
mizing

− 1
n

n∑
i=1

{
δiφ�Xi;Ui� −

∫ Xi

Zi

exp�φ�t;Ui��dt
}
+ λ

2
J�φ�:(2.7)

With an ANOVA decomposition φ = φ\ + φt + φu + φt; u, the elimination
of φt; u characterizes a proportional hazard model, and the inclusion of φt; u
takes one beyond the proportional hazard model. The covariate domain U can
be a product domain itself, on which hierarchical ANOVA structures can be
recursively constructed. The procedure (2.7) estimates all components of φ
simultaneously via penalized full likelihood.

When the covariate domain U degenerates to a singleton, (2.7) reduces to
the log-hazard estimation procedure originally proposed by O’Sullivan (1988a).

Treating φ\ +φt as nuisance parameters, penalized partial likelihood was
used by O’Sullivan (1988b) to estimate φu in a proportional hazard model
and by Zucker and Karr (1990) to estimate φu + φt; u of the form uβ�t�, a
parametric model with time-varying parameter.

Further details concerning (2.7) can be found in Gu (1994, 1996b, 1997).

Spectral density estimation. Spectral density estimation was a major mo-
tivation for the early development of nonparametric function estimation, and
the smoothing of a periodogram or log periodogram has been the main tool
since day one. Cogburn and Davis (1974) appear to have been the first to use
smoothing splines in spectral density estimation.

Based on the first two moments of the log periodogram, Wahba (1980) pro-
posed a certain penalized least squares estimate for the log spectral density,
and developed an optimal strategy for the selection of the smoothing param-
eter. As a refinement of Wahba’s (1980) work, Pawitan and O’Sullivan (1994)
replaced the least squares by the so-called Whittle log-likelihood of the log
periodogram, and developed their version of an optimal smoothing parame-
ter selector. The Whittle log-likelihood is virtually the same log-likelihood the
authors use in their LSPEC procedure.

Wahba (1980) and Pawitan and O’Sullivan (1994) both reported extensive
empirical studies to justify the optimality of their methods.

3. Asymptotics. Along with the recent methodological developments out-
lined in Section 2, a unified theme for the calculation of asymptotic conver-
gence rates for penalized likelihood estimates has also emerged. Actually, the
asymptotics has played an important role in bringing the method to practice.

Our asymptotic analysis is different from that of the authors. Instead of
using the L2 loss as the universal criterion, we use specific stochastic loss
functions customized to specific problem settings. What is common is the an-
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alytical approach, together with the routine we follow to customize the loss
functions and the regularity conditions.

Take density estimation of (2.3) for example. The loss we target is the sym-
metrized Kullback–Leibler,

SKL�φ;φ0� = µφ�φ−φ0� − µφ0
�φ−φ0�;(3.1)

where µg�h� =
∫

X heg/
∫

X eg and φ0 is the “true” function. A related normed
distance is

V�φ−φ0� = µφ0
��φ−φ0�2� − µ2

φ0
�φ−φ0�:(3.2)

Under appropriate conditions, the minimizer φ̂ of (2.3) converges to φ0 at a
rate

SKL�φ̂;φ0� ∼ V�φ̂−φ0� = Op�n−1λ−1/r + λ�;(3.3)

where r is the decay rate of the eigenvalues of V with respect to J, which
characterizes the smoothness of functions in space H ⊆ �fx J�f� < ∞� in
which φ̂ is sought. In general, the space H is infinite dimensional and φ̂ is not
computable. To bring the method to practice, an adaptive finite-dimensional
subspace of H , denoted by Hn, is identified, and the minimizer φ̂n of (2.3) in
Hn is shown to have the same convergence rate as given in (3.3). Technical
details can be found in Gu and Qiu (1993). Customizations for conditional
density estimation and for density estimation under sampling bias can be
found in respective references cited in Section 2.

For regression, the loss functions are customized to be

SKL�φ;φ0� =
∫

X
�φ−φ0��µ− µ0�f;

V�φ−φ0� =
∫

X
�φ−φ0�2v0f;

(3.4)

where µ�x� = ḃ�φ� = E�Y�x�, v�x� = b̈�φ� ∝ Var�Y�x� and f�x� is the limiting
density of xi. The rate given in (3.3) is established for the minimizer φ̂ of (2.2).
Technical details are given in Gu and Qiu (1994). In regression problems, φ̂
is known to be in a finite-dimensional space, so no φ̂n is necessary.

For hazard estimation, the loss functions are customized to be

SKL�φ;φ0� =
∫

U

∫
T
�exp�φ� − exp�φ0���φ−φ0�S̃m;

V�φ−φ0� =
∫

U

∫
T
�φ−φ0�2 exp�φ0�S̃m;

(3.5)

where S̃�t; u� = Prob�Z < t ≤ X�u� is the at-risk probability and m�u� is
the limiting density of Ui. The counting process and martingale structure of
survival data are employed to obtain the convergence rate given in (3.3) for
the corresponding φ̂ and φ̂n. Gu (1996b) gives details.

When φ0 resides outside of H , say an additive model is fitted while φ0 does
contain interaction, as the authors discuss in Section 2 of the paper, minimal
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modification of the analysis yields the same rate for φ̂ and φ̂n converging
toward the Kullback–Leibler projection of φ0 in H . For density estimation,
the projection is the minimizer of the relative Kullback–Leibler, RKL�φ�φ0� =
log

∫
X eφ−µφ0

�φ�, in H . Further details and customizations in other settings
are to be found in Gu (1995b).

References of influence include Silverman (1982), Cox and O’Sullivan
(1990), Zucker and Karr (1990) and O’Sullivan (1993).

4. Model selection and computation. We shall now discuss smoothing
parameter selection strategies, the single most important factor that deter-
mines the practical performance of the estimates. To facilitate the use of the
methods in data analysis, software that implements the methods is made
available to the public.

The most popular smoothing parameter selection method for penalized least
squares regression is Craven and Wahba’s (1979) generalized cross-validation
(GCV), which was shown by Li (1986) to asymptotically minimize the mean
square error, n−1∑n

i=1�φ�xi� − φ0�xi��2. Generic algorithms have been de-
veloped by Gu, Bates, Chen and Wahba (1989) and Gu and Wahba (1991)
for the calculation of automatic fits using GCV selected smoothing parame-
ters. The algorithms are implemented in RKPACK [Gu (1989)], a collection of
self-documented Fortran compatible routines (available at http://www.stat.

purdue.edu/~chong/software.html). Information needed for the construction
of interval estimates is also available from RKPACK routines.

Among earlier numerical work are GCVPACK by Bates, Lindstrom, Wahba
and Yandell (1987) for models without an ANOVA decomposition (ftp://ftp.
stat.wisc.edu/pub/wahba/software) and BART by O’Sullivan (1985) for the
fast calculation of smoothing splines in one dimension (http://www.netlib.
org/gcv).

For non-Gaussian regression, an iterative algorithm with a certain adap-
tation of GCV has been developed and justified in Gu (1990, 1992c). Through
semitheoretical analysis and simulation, the GCV adaptation was shown
to asymptotically minimize the symmetrized Kullback–Leibler of (3.4). The
computation is conveniently conducted by direct calls to existing RKPACK
routines in each step of the iteration. Portable code was put together by Wang
(1995) in GRKPACK (available at http://www.stat.purdue.edu/~chong/

software.html). An alternative GCV adaptation was developed by Xiang and
Wahba (1996).

The computation of density estimates, including conditional densities and
possibly with sampling bias, and that of hazard estimates have much in com-
mon numerically. A smoothing parameter selection strategy, designed to mini-
mize the loss functions of (3.1), (3.2), (3.5) or others in their respective settings,
was built into certain performance-oriented iteration algorithms by Gu (1993,
1994, 1997) and was shown to demonstrate favorable performance in simula-
tion studies. Fortran compatible routines implementing the algorithms have
been put together by the discussant in RKPACK-II (currently available in beta
version at http://www.stat.purdue.edu/~chong/software.html).
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What I like the most in the authors’ treatment is their provision of user-
friendly S functions, which we also hope to do, but probably not in the imme-
diate future. By working with a selected few basis functions, the authors were
able to confine the numerical task to a manageable magnitude even for large
data sets. With execution speed O�n3� and memory requirement O�n2�, how-
ever, the algorithms implemented in RKPACK and RKPACK-II are likely to
hang S with large data sets. Progress is being made to improve the situation
[Wahba and Luo (1995)], and with the chip capacity magnifying and the chip
price declining at the current rate, larger and larger problems will soon come
within reach.

5. Further thoughts on model selection. Being the single most impor-
tant issue in function estimation, model selection is probably also the softest
spot, because “ad hocness” is often the name of the game. The authors’ strategy
guided by the Wald statistic, the Rao statistic and AIC or BIC is certainly very
appealing, and the examples presented indeed demonstrate adequate perfor-
mance, yet more can be desired, especially in view of how first intuitions can
be grossly misleading in this area [Gu (1992c, 1995c)].

What appears missing in the authors’ treatment is a systematic assessment
of the performance of the method. Rigorous theoretical justification such as
Li’s (1986) results on Craven and Wahba’s (1979) GCV is probably too much
to ask, but systematic empirical evidence ought to be supplied to present a
real convincing case. With a systematic model indexing, such as that by λ for
penalized likelihood estimates or that by bandwidth for kernel estimates, one
can (and should) always assess the performance of a model selection strategy,
at least in relatively simple settings, by gauging its choices against the best
possible fits in simulation studies. Such an assessment is understandably less
feasible with a recursive growing/pruning approach that the authors have
adopted, for the best possible fits are almost impossible to identify. Until some
assessment as convincing yet feasible is developed, however, one may not be
fully confident that the method is likely to return a nearly optimal fit. Note
that AIC, BIC or GCV are not loss functions themselves and do not define the
notion of optimality.

In a promising recent development, Shen and Hu (1994) directly tracked
some consistent estimate of the relative Kullback–Leibler during the addi-
tion/deletion of knots in an adaptive regression spline approach known as
the universal sieve method. Backed by rigorous theoretical justifications, the
method is somewhat more excusable of a systematic empirical performance
assessment.

The lack of performance assessment may also translate into user’s confu-
sion in practice. Take the Buffalo snowfall data for example. Facing a rich
selection of four possible recipes with neither a track record for each nor a
house recommendation, and with markedly different results at least between
three of them, I don’t know whether a consumer will choose to roll a die or
simply leave the house. With a sample size of n = 63, as the authors point
out, it is virtually impossible to accurately estimate the number of modes, so
the simulation presented in Table 2 of the paper offers little help.
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Fig. 1. The distribution of Buffalo annual snowfalls. The three dashed lines are the automatic
estimates under the three domain assumptions indicated by their running lengths. The dotted lines
plot a finely binned histogram of the data.

Reproduced in Figure 1 are three automatic fits to the Buffalo snowfall data
using the penalized likelihood method, taken from Gu (1993). The user again
has to make some choices, but the choice here is not for different model selec-
tion strategies, but for the domain X on which the log density is assumed to
be smooth. The data range from 25.0 to 126.4, and the three fits are supported
on �20;130�, �10;140� and �0;150�, respectively. As the support expands, the
model selection strategy tries harder to take away the mass assigned to the
empty space at the ends by smoothness, yielding rougher estimates. All three
fits are unimodal, however, with the roughest barely showing two shoulders.
Note that the relatively smoother fits are not due to a lack of flexibility in
the estimation, as the space Hn (cf. Section 3) has a dimension of 64, but
simply by the choice of the model selection procedure. To check out how well
the model selection procedure tracks the optimal fits in terms of symmetrized
Kullback–Leibler, the reader is referred to the simulation studies documented
in Gu (1993).
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in a wide variety of statistical problems. The unifying framework of extended
linear modeling provides substantial insights about the essential ideas of this
type of spline smoothing.

While the presentation is generally excellent, we question the chosen termi-
nology “polynomial splines.” The problem is that the rather popular “smooth-
ing spline,” which is a solution of a regularization problem and already the
subject of two monographs [Wahba (1990) and Green and Silverman (1994)],
is also a polynomial spline (although of a very different type). In our view, it
would be more appropriate to call the type of spline in the present paper by
their older names of “B-spline” or “regression spline.”

This discussion consists of questions in four directions: interpretability, the-
ory versus implementation, the effectiveness of knot deletion algorithms and
how applicable the present methodology is to some problems in time series
and model testing.

1. Interpretability. Many statisticians view simplicity and intuitive un-
derstanding of “what the smooth is doing to the data” as very important cri-
teria in choosing a smoothing method. In this respect, we suggest moving
average–kernel–local polynomial methods as being preferable, and we believe
that they will continue to have an enduring attraction to many statisticians
for this reason. We note that Kooperberg and Stone (1991) were not immune
to this appeal, and used a very simple kernel method to show (quite convinc-
ingly) that the spline method at that time was doing a very good job of density
estimation (in fact better than “higher tech” kernel methods). From the point
of view of simplicity and interpretability, we ask: “if the kernel method is how
one really understands what is going on in the data, why should one then
construct the spline?”

2. Theory versus implementation. The gap between what is called
“the nonadaptive procedures that we can treat analytically” and “the adap-
tive methodologies that we have implemented” is somewhat worrying. We
are unsure about the suggestion that this is merely because the knot dele-
tion/addition is not very tractable to mathematical analysis. Instead we won-
der: “has nobody been able to show this adaptive method is statistically effi-
cient because it is inefficient?”

An alternate, intuitively appealing approach to knot choice for B/regression
splines, based on Bayes’ ideas, has been developed in Smith and Kohn (1994,
1996a, b). See the Ph.D. dissertation by Smith (1996) for an excellent sum-
mary, and a compelling case made for the effectiveness of this approach. A
direct comparison of this Bayesian approach with that of the present pa-
per would be quite interesting in terms of statistical efficiency, flexibility and
also computation time. We note that Smith and Kohn do much more exten-
sive simulation, and we wonder if this is because their methods are faster to
compute.

3. Knot deletion. In this section, we look carefully at some ideas which
give us doubts concerning the issues raised in Section 2. We focus here on the



EXTENDED LINEAR MODELING 1445

one dimensional regression setting, which is probably the easiest to under-
stand and interpret, but the issues we raise here likely exist as well in other
settings.

In Section 5 of Stone, Hansen, Kooperberg and Truong, the minimal space
is the space of constant functions. Here we show that more discussion of this
issue is needed. In particular, we show that without this restriction, the knot
deletion procedure can give poor performance both asymptotically and with
a simulated example. We wonder if this is an anomaly of the minimal space
or if this is what lies at the root of the fact that good asymptotic properties
have not been demonstrated for knot deletion methods. In our asymptotics we
show that in a “high noise case” a crucial term can be improperly eliminated
by knot deletion, which leads to an inconsistent estimate. We then show that
this effect is not just an artifact of our asymptotic model by considering a
reasonable simulated example where this occurred.

For this, consider the simple regression model

Y =m�X� + ε;
where X is assumed to be uniformly distributed on �0;1�, ε is independent
of X and normally distributed with mean 0 and variance σ2, and m�·� is a
function defined on �0;1� with piecewise continuous derivative. Using equally
spaced knots initially [as in Stone (1985, 1994)], we let the basis functions be

B0�x� ≡ 1; B1�x� = x; Bj�x� =
(
x− j− 1

J

)

+
; j = 2; : : : ; J;

where J = O�n1/3� [because here p = d = 1 in the notation of Stone (1994),
where p is the degree of smoothness and d is the highest degree of interac-
tion allowed]. For simplicity, set J = 2�n1/3/2� + 1. Given a random sample
�Xi;Yi�ni=1, let m̂�x� = ∑J

j=0 β̂jBj�x� be the linear spline estimator of m�·�,
where the coefficients β̂j satisfy

(
β̂j
)
= arg min

β∈RJ+1

1
n

n∑
i=1

(
Yi −

J∑
j=0

βjBj�Xi�
)2

:

The deletion rule in the regression setting is to use the residual sum of squares
to decide which basis function to add or delete. According to the definition of
allowable spaces, the function B1 cannot be deleted unless all Bj, j ≥ 2, had
been deleted. Although new knots at preselected order statistics of the data
could be added, we believe that the addition of these new knots would not
significantly change the situation that we are addressing here. We let β̂j; j =
0;1;2; : : : ; J, denote the estimated coefficients for the allowable space that
has the smallest GCV value, after the deletion process is done. An indication
of difficulties in this context is given by:

Proposition 1. Under the above assumptions and without the restriction of
constant functions being in the minimal space, ifm�x� = 1+bx and σ = 2�n1/3�,
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there exists a constant C1 > 0, such that

lim
n→∞

inf P
[
β̂0 = 0

]
≥ C1:

The fact that this leads to inconsistency is summarized as:

Corollary 1. Under the above assumptions and without the restriction
of the constant function being in the minimal space, if m�x� = 1 + bx and
σ = 2�n1/3�, there exist constants C1 > 0 and C2 > 0, such that

lim
n→∞

inf P
[∥∥m̂�x� −m�x�

∥∥
∞ ≥ 1

]
≥ C1:

The assumption σ ≈ n1/3 is a model for “high noise with respect to the
sample size.” Such noise levels often occur in econometrics. This version of the
adaptive spline seems questionable in such applications, because it is incon-
sistent. This makes us wonder about possible similar inefficiencies in the knot
deletion approach because of similar occurrences for other “important” basis
functions. Note also that this estimation context is not impossibly difficult.
For example, using the simple Nadaraya–Watson estimator, the L∞ rate is

O
[
n1/3�n−1h−1 log n�1/2 + h

]
;

optimized when the bandwidth h is chosen at the rate n−1/9�log n�1/3, which is
also the optimal rate. See, for example, Györfi, Härdle, Sarda and Vieu [(1989),
Theorem 3.3.0, page 23].

Figure 1 shows a simulated example which demonstrates that the problem
of deleting important knots in this way is not an asymptotic oddity. The tar-
get function is linear, m�x� = 0:6x + 0:2. The data come from adding i.i.d.
N�0;0:25� noise as shown. The estimate comes from doing knot deletion and
then finding the AIC and BIC best choices of the number of knots (they were
the same for this data set). The poor behavior on the right-hand side is “bad
luck” because the data happen to be larger than usual in that area. However,
the poor behavior on the left-hand side is caused by the fact that the intercept
term of the model is deleted relatively early in the sequence. We are concerned
about this because the intercept is actually part of the underlying model.

Our question here is: “are these simply artifacts of our ignoring the minimal
space or are they indicators that in fact knot deletion is an inefficient method
of adaptation?”

4. Time series and model testing. In nonlinear time series analysis,
the conditional variance is often of interest, sometimes more than the con-
ditional mean (for some econometrics data, for example). A review of some
recent works in this area can be found in Härdle and Chen (1995) and the ref-
erences therein. Simultaneous estimation of additive mean and multiplicative
volatility functions in autoregressive time series has been done with the local
polynomial method by Yang and Härdle (1996). Härdle, Tsybakov and Yang
(1996) have also developed estimation procedures of the mean and covariance
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Fig. 1.

function in vector autoregression using local linear estimators. It would be
interesting to see such results obtained with the spline approach.

Another area of interesting research where the local polynomial method
has been successfully employed is the testing of models. In particular, Härdle,
Mammen and Müller (1996) developed procedures for testing parametric ver-
sus semiparametric modeling in generalized regression, while Härdle and
Yang (1996) developed procedures for testing linearity of main effects in gener-
alized additive regression. Again, it would be interesting to see work in these
areas using B/regression splines, which we suspect may be more difficult.

APPENDIX

Proof of Proposition 1. We denote by X the vector �X1;X2; : : : ;Xn�T,
by Y the vector �Y1;Y2; : : : ;Yn�T and by ε the vector �ε1; ε2; : : : ; εn�T. The
inner product on Rn is defined as �x;y�= �x;y�n=�1/n�

∑n
i=1 xiyi, while

for functions as �f;g�=
∫ 1

0 f�x�g�x�dx, the norms are defined accordingly.
Also denote by V�j1; j2; :::; jk� the function space spanned by Bj1

�x�;Bj2
�x�; : : : ;
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Bjk�x� and by V̂�j1; j2; :::; jk� the space spanned by Bj1
�X�;Bj2

�X�; : : : ;Bjk�X�.
For any vector v (or function f), we denote also by v�j1; j2; :::; jk� (or f�j1; j2; :::; jk�)
the projection of v (or f) and by v⊥�j1; j2; :::; jk� (or f⊥�j1; j2; :::; jk�) v − v�j1; j2; :::; jk�
(or f − f�j1; j2; :::; jk�). The distance from v to V̂�j1; j2; :::; jk� is �v⊥�j1; j2; :::; jk��,
which we denote by d�v��j1; j2; :::; jk� and so forth. For now, we fix m�x� ≡ 1+bx.
Without loss of generality, we take b = 0 because the function B1�x� ≡ x
cannot be deleted.

Lemma 1. For any j = 2;3; : : : ; J, 1/4 ≤ �J/j�Dj ≤ 1/3, where

Dj = d�m�x��2�1; j; j+1; :::; J�;

and consequently

1
4
�1+Op�n−1/2�� ≤ J

j
Dj ≤

1
3
�1+Op�n−1/2��

where Dj = d�m�X��2�1; j; j+1; :::; J�.

Proof. It is easy to verify that �m�x�− �J/j��B1�x�−Bj�x���2 = j/�3J�,
which implies the right-hand side of the inequality. Note that among the func-
tions B1�x�;Bj�x�;Bj+1�x�; : : : ;BJ�x�, only B1�x� is nonzero on the interval
�0; j/J�; thus,

d�m�x��2�1; j; j+1; :::; J� ≥ min
t

∫ i/J
0
�1− tx�2 dx = j

4J
: 2

Lemma 2. For any j = 2;3; : : : ; J,

�ε�1; j; j+1; :::; J��2 =
4�J− j�
n1/3

�1+ op�1��:

Proof. The two facts needed for the proof are ε is N�0n; σ2In×n� =
N�0n;4n2/3In×n�1 + o�n−1/3�� and the projection subspace is of dimension
1+ �J− j+ 1�. 2

Lemma 3. For any j = 2;3; : : : ; J,

n1/6

2
√

Dj

〈
ε;m�X�⊥�1; j; j+1; :::; J�

〉
→N�0;1�:

The proof is similar to the previous lemmas.
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To complete the proof of Proposition 1, we want to prove that the following
event has a probability ≥ C1 > 0:

∥∥ε�0;1; :::; j−1; j+1; :::; J�
∥∥2 +

∥∥m�X��0;1; :::; j−1; j+1; :::; J�
∥∥2

+ 2
〈
ε�0;1; :::; j−1; j+1; :::; J�;m�X��0;1; :::; j−1; j+1; :::; J�

〉

<
∥∥ε�1; :::; j−1; j; j+1; :::; J�

∥∥2 +
∥∥m�X��1; :::; j−1; j; j+1; :::; J�

∥∥2

+ 2
〈
ε�1; :::; j−1; j; j+1; :::; J�;m�X��1; :::; j−1; j; j+1; :::; J�

〉

for all j=2;3; : : : ; J. This is proved by noting that in factm�X��0;1;:::;j−1;j+1;:::;J�
=m�X�,
∥∥ε�0;1; :::; j−1; j+1; :::; J�

∥∥2 −
∥∥ε�1; :::; j−1; j; j+1; :::; J�

∥∥2

≤
∥∥ε�0;1; :::; j−1; j; j+1; :::; J�

∥∥2 −
∥∥ε�1; :::; j−1; j; j+1; :::; J�

∥∥2 ≤ 4
n1/3
�1+ op�1��

by Lemma 1 and
∥∥m�X��0;1; :::; j−1; j+1; :::; J�

∥∥2 −
∥∥m�X��1; :::; j−1; j; j+1; :::; J�

∥∥2

=
∥∥m�X�

∥∥2 −
∥∥m�X��1; :::; j−1; j; j+1; :::; J�

∥∥2 ≤ 1
3J

by Lemma 2, while

2
〈
ε�0;1; :::; j−1; j+1; :::; J�;m�X��0;1; :::; j−1; j+1; :::; J�

〉

− 2
〈
ε�1; :::; j−1; j; j+1; :::; J�;m�X��1; :::; j−1; j; j+1; :::; J�

〉

= 2
〈
ε;m�X�⊥�1; :::; j−1; j; j+1; :::; J�

〉

has variance of order n−1/3�1/J� or n−2/3 by Lemma 3. Therefore the proba-
bility of

2
〈
ε;m�X�⊥�1; :::; j−1; j; j+1; :::; J�

〉
+ 4
n1/3
�1+ op�1�� +

1
3J

< 0

is greater than a positive constant, meaning that the constant basis B0 would
be the first one to be removed. It is easy to verify that the GCV for the space
V̂�1;2; :::; J� can also be made smaller than that of V̂�0;1;2; :::; J� with positive
probability. In other words, the event (α = 2:5 according to the end of Sec-
tion 5.2 of Stone, Hansen, Kooperberg and Truong)

(
n− αJ

n− αJ− 1

)2∥∥ε⊥�0;1; :::; J�
∥∥2

>
∥∥ε⊥�1; :::; J�

∥∥2 + 2
〈
ε⊥;m�X��1; :::; J�

〉
+
∥∥m�X�⊥�1; :::; J�

∥∥2

can have a positive probability as well. Thus we have shown that the proba-
bility that the final model does not contain the constant term is positive. 2
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Proof of Corollary 1. Note again that among the functions Bj�x�, 1 ≤
j ≤ J, only B1�x� is nonzero on the interval �0; j/J�, thus, when the constant
term is not in the final model,

∥∥m̂�x� −m�x�
∥∥
∞ ≥ inf

t∈R1
sup

x∈�0;1/J�
�1− tx� = 1: 2
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DISCUSSION

Trevor Hastie and Robert Tibshirani
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In this paper and their work in the past few years, the authors have done a
terrific job in making spline fitting accessible in a wide variety of contexts. Our
discussion focuses on the POLYMARS and POLYCLASS procedures, where we
report on two discoveries we have made recently.

1. Masking. A popular approach to multiclass classification is via dummy
variables and indicator matrices. Suppose we create a K+1 response random
vector Z (using the notation of the present paper), such that Zk = ind�Y = k�.
Thus Z is a vector of all zeros and a single 1 in the position corresponding to
the class of Y. Then

E�Z�X = x� = P�x�
=
[
P�Y = 1�X = x�; : : : ;P�Y =K+ 1�X = x�

]
:

(1)

Since regression can be viewed as estimating a conditional expectation, (1)
suggests that we can regress each of the K+ 1 elements Zk on x to estimate
the elements of P�x�, the conditional probabilities needed for classification.
Flexible regression procedures such as MARS, POLYMARS or neural networks
are particularly appropriate because they tend to operate locally in x.

A purist may complain because the estimates thus obtained are not guar-
anteed to be positive or to sum to 1 (although typically they will sum to 1 if
the regression method includes an intercept). If we ignore the possible neg-
ativity of some of the (smaller) elements of P�x�, we would typically clas-
sify to the class with the largest fitted value. This approach is consistent,
in that as the regressions approach conditional expectations, this classifier
approaches the Bayes-optimal classifier for 0/1 losses.

The authors suggest this approach using POLYMARS to select the basis
functions to be used in POLYCLASS. We have used the same approach to
select basis functions in the context of flexible discriminant analysis [Hastie,
Tibshirani and Buja (1994)].

There are difficulties with this approach, which get worse as K/N gets
large. Figure 1 shows some fabricated data with three classes and a single
predictor variable x. The classes are perfectly separated, yet when we perform
the indicator variable regressions (using linear regression) we see that the
middle class never dominates. Of course, this problem can be easily solved
by using quadratic regressions rather than linear, and since we anticipate
adaptive regression procedures, why the concern?

1. Suppose there are 10 predictors and the 3 classes line up along a particular
direction α in predictor space. In order to solve the problem via quadratic
polynomials, we would need to fit a general quadratic surface with all the
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Fig. 1. The three classes are perfectly separated by the single predictor X �the rug plot shows
the distribution of the data�. The three lines represent the linear regression fits of each of the
three columns of the indicator response matrix Z on X. The 1’s, 2’s and 3’s at the top of the plot
indicate the three response indicators Zi; i = 1; : : : ;3; each to be matched with the zeros for each
of the other two classes. The middle class is completely masked, in that its regression line �fitted
probabilities� never dominate.

bilinear terms included. Of course, if we knew about projection pursuit
regression, we could be a bit smarter than that.

2. If four classes line up, the quadratic curves do not drop down sufficiently
fast, and cubic curves are more appropriate. In general, if M classes line
up, order M polynomials tend to be needed to completely untangle them.

When the number of classes is large relative to the number of predictors,
masking or partial masking of this kind is relatively frequent. Procedures
like MARS or POLYMARS will struggle in general to achieve the untangling,
because they have difficulty creating the type of general interaction terms
required here.

Now if the end result is POLYCLASS on the selected basis functions, then
it seems the problem disappears. In these examples POLYCLASS with simple
linear basis functions will achieve perfect separation, because the nonlinearity
of the exponential is sufficient (actually, if the regions are really pure, then the
optimal coefficients will be infinite). The point is we do not want POLYMARS
or MARS, the basis-function selectors, to be spinning their wheels adding
basis functions that are ultimately not needed in the POLYCLASS model. The
solution is of course to perform the selection within the POLYCLASS model,
perhaps via sequential use of the score tests, despite the heavy computational
premium.
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2. Naive Bayes. This (apparently unattractive) procedure is reported to
be quite successful as a classifier [Michie, Spigelhalter and Taylor (1994)]; here
we describe it in the context of the LOGSPLINE density estimation procedure.
Again in the classification context, consider the following independence model
for the class conditional densities fk�x�:

log fk�x� = log
M∏
m=1

fkm�xm�

=
M∑
m=1

log fkm�xm�

=
M∑
m=1

Jkm∑
j=1

βkmjBkmj�xm�:

(2)

This is a conditional independence model—in each class the densities are a
product of marginal densities. We can fit each of these �K+ 1� ×M marginal
densities using the LOGSPLINE procedure.

Given these approximated class densities f̂k, we would classify to the class
for which f̂k�x�πk is largest. The attractiveness of this approach is that we
need only to estimate the marginal densities separately (and possibly in par-
allel.) The criticisms usually leveled are that (a) the conditional independence
assumption seems rather stringent and (b) we might be optimizing to achieve
subtle features of the separate class densities that ultimately cancel when we
come to classify.

Suppose for simplicity we drop the k subscript from the basis functions;
that is, we use the same Jm basis functions for the mth coordinate in each
of the K + 1 models. Using the �K + 1�st class as the reference, the logit
transform of this naive Bayes model is

θ�k�x� = log
P�Y = k�X = x�

P�Y =K+ 1�X = x�

= log
fk�x�πk

fK+1�x�πK+1

= αk +
M∑
m=1

Jm∑
j=1

�βkmj − β�K+1�mj�Bmj�xm�

= αk +
M∑
m=1

Jm∑
j=1

αkmjBmj�xm�:

(3)

This has the same form as the (additive) POLYCLASS model. What then is
the distinction?

There is an analogy here to the distinction between linear discriminant
analysis and logistic regression. The POLYCLASS model is more general and
hence more robust, in effect allowing fK+1 to be arbitrary, and each of the fk
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to be an exponentially additive tilt of fK+1:

fk�x� = fK+1�x� exp
[
αk +

M∑
m=1

Jm∑
j=1

αkmjBmj�xm�
]
:(4)

The coefficients are fitted by maximizing the multinomial or conditional like-
lihood �P�Y�X = x��, where fK+1 does not play a role. The naive Bayes model
assumes fK+1 is also log additive and fits all the parameters by maximizing
the full likelihood [actually P�X�Y�, but trivially including P�Y = k� = πk
gives us P�X�Y�P�Y� = P�X;Y�].

Given the naive Bayes model, the distinction appears to be between dis-
criminative (multinomial) versus nondiscriminative training, with the latter
offering a great deal of simplification.

We are currently exploring the trade-offs between these two approaches,
which can also be extended to handle interactions (second order dependencies).
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REJOINDER

Charles J. Stone, Mark H. Hansen, Charles Kooperberg,
Young K. Truong and Jianhua Z. Huang

University of California, Berkeley, Bell Laboratories,
University of Washington, University of North Carolina, Chapel Hill

and University of California, Berkeley

We wish to thank our discussants for their interesting and thoughtful com-
ments. With these comments in mind, we begin our rejoinder by clarifying
some features of spline-based estimation in the context of an extended linear
model.

1. Extended linear modeling revisited. Since our paper was written,
the theoretical investigation of extended linear modeling has continued to ex-
pand. In particular, in Huang (1996a, b) the rate of convergence results for
polynomial splines in Section 2 of our paper have been extended to general
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approximating spaces including polynomials and trigonometric polynomials,
as well as polynomial splines. In Huang and Stone (1996) this more general
framework is used to extend the rate of convergence results for hazard re-
gression in Kooperberg, Stone and Truong (1995b) to event history analysis
involving repeated events of multiple kinds and time-dependent covariates.
In light of this work by Huang and his further work in progress on extended
linear modeling, the authors of this paper have invited him to be a coauthor
of our rejoinder.

In Section 2 of the paper, we presented a rather general asymptotic result
for maximum likelihood estimates defined over spaces of (possibly smooth)
piecewise polynomials. Suppose for simplicity that the separate intervals used
to define the different (univariate) polynomial pieces have common length δ,
corresponding to equally spaced knots. To achieve the optimal rate of con-
vergence, δ must shrink to zero as the sample size tends to infinity, with
the rate being chosen to balance the bias and variance of the resulting esti-
mate. Stone and Koo (1986a, b) followed a similar nonadaptive recipe for knot
placement in the context of generalized linear models and logspline density
estimation. In practical applications, however, fixed knot splines are rarely ad-
equate, so adaptive knot spline procedures have been developed that alternate
between adding knots in regions where the unknown function being estimated
exhibits significant features and deleting knots in regions where, subject to
noise considerations, this function seems relatively unstructured. A long but
still incomplete list of such developments includes Smith (1982); Breiman,
Friedman, Olshen and Stone (1984); Friedman and Silverman (1989); Breiman
(1991); Friedman (1991); Kooperberg and Stone (1991, 1992); Breiman (1993);
Zhang (1994); Kooperberg, Stone and Truong (1995a,c); Hansen, Kooperberg
and Sardy (1996); and Kooperberg, Bose and Stone (1997).

Knot placement is not variable selection. Being based on classical model
building techniques, adaptive knot spline procedures are readily understood by
practitioners. There is, however, a crucial distinction between knot placement
and variable selection. Let G be the space of twice continuously differentiable
cubic splines on a bounded interval �a; b� having knots (jumps in the third
derivative) at the points x1; : : : ; xM inside this interval. Aside from its poor
numerical properties, the truncated power basis 1; x; x2; x3; �x−x1�3+; : : : ; �x−
xM�3+ is convenient for dealing with the addition and deletion of knots. Specif-
ically, deleting a knot is equivalent to deleting one of the last M columns
from the design matrix corresponding to the indicated basis, and adding a
knot is equivalent to adding the appropriate column to this matrix. It is im-
portant, however, to restrict these column operations on the design matrix so
that at each step we have made sensible alterations to the underlying func-
tion space. Thus we have been careful to treat adaptation in terms of spline
spaces, stressing the notion of allowable spaces.

To illustrate what can go wrong, consider knot deletion. By treating this
process as a problem in variable selection, we could remove any column of
the design matrix corresponding to the truncated power basis. Unfortunately,
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however, if we attempt to remove the intercept or linear term x in the trun-
cated power basis before the other basis functions have been removed, the
resulting space will have potentially poor approximation power in the inter-
val �a; x1�. This is essentially the observation of Härdle, Marron and Yang in
the arguments leading to their Proposition 1. While they are mainly concerned
with the intercept being removed, the same effect will hold if the linear term
is removed prematurely.

In the top row of Figure 1 we display the results of repeating the simulation
described by Härdle, Marron and Yang 100 times. For each run, we created a
data set of 200 observations: yi = 0:6�i − 0:5�/200 + 0:2 + εi, i = 1; : : : ;200,
where εi ∼N�0;0:25�. We then performed backward deletion on the columns
of the design matrix based on M = 9 equally spaced knots, ignoring the im-
plications on the underlying space G. For each data set, we selected the best
BIC fit from the sequence of models encountered during deletion, and in the
three plots in the top row of Figure 1 we present the top third, middle third,
and bottom third of the fits ordered by mean squared error. The gray regions
denote the theoretical 95% (pointwise) prediction intervals for the simulated
data. For comparison, we repeated this process on the same data sets, this
time respecting the structure of the linear spline space; that is, we consid-
ered constant, linear, quadratic and cubic polynomial models together with
cubic spline models corresponding to the original collection of knots and its
nonempty, proper subsets. For each fit, we also imposed the “tail-linear con-
straints” g′′�0� = g′′�1� = 0 that are commonly employed in adaptive knot
cubic spline procedures such as LOGSPLINE and Friedman’s MARS. Because
this constraint eliminated 2 degrees of freedom, we enlarged the space and
considered M = 11 initial knots. The resulting fits are presented in the middle
row of Figure 1, again ordered by mean squared error.

The welter of curves in the top row of Figure 1 exhibits the anticipated
behavior when knot deletion is confused with variable selection. As can be
readily verified from the subplots in this row, the intercept appears in only
39 of the 100 final fits. The only fit that actually included both the intercept
and the linear term x also contained the other two polynomial terms x2 and
x3 and two additional spline functions from the power basis. The essential
problem is that in the first few deletion steps, the models being considered
have very similar residual sums of squares, and a decision that compromises
the approximation power of the underlying space can easily be made. This
is the essential thrust of the arguments by Härdle, Marron and Yang. By
contrast, consider the fits displayed in the second row of Figure 1, only four
of which contain terms other than 1 and x. These fits underscore the need to
perform stepwise deletion properly, respecting the underlying approximation
space. When tail-linear constraints are not imposed, the second row changes
only in the high MSE or third subplot, with the extra variation being seen
near the boundaries of the interval.

The stepwise procedures suggested in our paper represent computationally
efficient approaches to knot placement that have proved effective in practice,
but, as the above simulation underscores, it is important to impose the correct
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Fig. 1. The simulations of Härdle, Marron and Yang. Three separate approaches to model selec-
tion.
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hierarchical structure when adding or deleting columns from the design ma-
trix. Not only did Härdle, Marron and Yang fail to appreciate the distinction
between knot placement and variable selection, but this point was also missed
in the original paper [Smith and Kohn (1996a)], on Bayesian nonparametric
regression that they cite. However, this Bayesian approach can be corrected
and it provides us with a nice framework to discuss more general schemes for
allocating knots efficiently.

Other knot placement procedures. The idea behind the Smith–Kohn tech-
nique is to introduce a binary vector γ = �γ1; : : : ; γM+4� that indexes the
columns of the design matrix X corresponding to the truncated power basis:
γi equals 0 or 1 according as the coefficient βi of the ith basis function does
or does not equal 0. The components of γ are assumed to be a priori indepen-
dent, with probability 1

2 of equaling 0. This corresponds to giving all possible
subsets of the set of M + 4 variables the same prior probability. After also
specifying prior distributions for β = �β1; : : : ; βM+4���γ; σ2� and σ2�γ, Smith
and Kohn derived the posterior distribution of γ given the vector of n obser-
vations y = Xβ + ε, where ε ∼ N�0; σ2In�. Specifically, if we let βγ and Xγ

denote the coefficient vector and design matrix, respectively, corresponding
to a model containing exactly those variables for which γi equals 1, then by
setting

p�βγ�γ; σ2� =N�0; c�XT
γXγ�−1� and p�σ2�γ� ∼ 1/σ2;

we find that the posterior probability function of γ is given by

p�γ�y� ∼ �1+ c�−qγ/2
(
yTy− c

c+ 1
yTXγ�XT

γXγ�−1XT
γ y

)−n/2
;

where qγ =
∑
i γi is the number of terms in the model and c is a user-specified

constant. Smith and Kohn applied the Gibbs sampler to simulate from the
posterior distribution of γ and either report the posterior mode of γ or the pos-
terior mean of β. The model has been specified so that the sampling procedure
steps through many models with high posterior probability in a computation-
ally efficient manner. After K Gibbs iterations, two alternative approaches
are applied to the samples γ�k�, k = 1; : : : ;K, to estimate β: (i) β̂ is obtained
by a least squares fit to those variables included in the model specified by the
vector γ�k� that maximizes p�γ�k��y� or (ii) the posterior mean E�β�y� is es-
timated by the average value of E�β�y; γ�k��, where the indicated conditional
expectation is computed exactly using the fact that β��y; γ� has a multivariate
t distribution.

Transforming the expression for the posterior probability function of γ into
something more familiar to the smoothing community, Foster and George
(1996) have found that under certain conditions the value of γ that maximizes
this function also minimizes the quantity RSS�γ� + �1 + c−1� log�c + 1�qγσ̂2,
where RSS�γ� is the residual sum of squares for the model specified by γ, and
σ̂2 is estimated from the full model with all M + 4 variables. By selecting c
properly, we can perform model selection with respect to Mallow’s Cp, AIC
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or BIC. Making this connection, we see that the Gibbs sampler of Smith and
Kohn is in fact an alternative to our approach of minimizing BIC in a stepwise
fashion. Unfortunately, because of the way the vector γ treats all variables as
candidates for inclusion or exclusion, we are left with the deficiencies described
in the previous section.

As an illustration of the last remark, we applied the Smith–Kohn technique
to the same data and basis as in our previous simulations. To this end we
downloaded the S-PLUS function br() from statlib, which returns only the
posterior mean estimate of β, and applied it with the option density = 20, thus
specifying 20 data points per knot (or M = 9). The resulting fits, shown in the
bottom row of Figure 1, exhibit behavior that is similar to (but somewhat less
variable than) those in the top row. The problem is that the posterior model
probability is roughly the same for the simple model involving 1 and x as it
is for a large number of models that include a single polynomial term and
one or more of the spline functions from the power basis. In short, because
Smith and Kohn searched over models that would not be considered when
the underlying approximation space G is respected, their final fits average
together models with the same types of degeneracies as are found in the top
row of Figure 1. Mike Smith (personal communication) has indicated several
ways in which their technique could provide for the proper structure of spline
spaces by imposing corresponding structure on the prior distribution of γ.
Further results on the general model considered by Smith and Kohn and
empirical Bayes procedures for estimating c and specifying different prior
distributions for γ can be found in Foster and George (1996). Ultimately, we
agree with Härdle, Marron and Yang that, properly implemented, the Smith–
Kohn technique is a very attractive method for efficiently identifying good
knot locations in the context of least squares regression.

The performance of this technique, however, is heavily dependent on the
number of knots used to define the truncated power basis. An alternative
approach followed by Denison, Mallick and Smith (1997) involves defining
prior distributions for the number and location of knots as well as the coeffi-
cients in a spline expansion. The resulting “automatic Bayesian curve fitting”
procedure makes use of reversible jump Markov chain Monte Carlo methods
[Green (1995)] to compute the posterior distribution, this time over collec-
tions of models having different numbers and positions of knots. At each step
in their sampling procedure, one of several possible transitions is chosen at
random. These transitions include adding a new knot and either moving or
deleting an existing knot, and they can in principle be made efficient through
the use of Rao and Wald statistics as discussed in Section 3 of our paper.

Recently, Hansen and Kooperberg (1997) have applied Markov chain Monte
Carlo to the problem of identifying promising triangulations for fitting the tri-
ogram models discussed in Section 9. In this investigation, the collection of
addition and deletion steps described in Figures 15 and 16 in Section 9.2 has
been augmented with two new moves, illustrated here in Figure 2: (i) swapping
the diagonal of a convex quadrilateral; (ii) moving a vertex within the union
of triangles that contain it. With these additional moves, a much wider vari-
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Original Triangulation Swapping a Diagonal Moving a Vertex

Fig. 2. Additional moves to improve the search for promising triangulations.

ety of triangulations can efficiently be examined than was possible by means
of simple stepwise adaptation. For a similar technique applied to piecewise
constant modeling, see Nicholls (1996).

2. Specific responses to our discussants.

Härdle, Marron and Yang. Härdle, Marron and Yang question the use of
stepwise knot deletion, indicating that this may be “an inefficient method of
adaptation.” Their concerns stem primarily from their proof that if we are
cavalier in our definition of a minimal space, then the resulting estimates
can be inconsistent. As noted in Section 1 of this rejoinder, their proposal to
remove the constant function from the minimal allowable space is not natural
when this space is thought of as a linear space of functions rather than as the
span of columns of the design matrix. Härdle, Marron and Yang also suggest
that these inconsistencies could develop for other “important” basis functions.
Like other locally adaptive procedures, the stepwise addition and deletion
process can produce spurious effects. The arguments of Härdle, Marron and
Yang, however, paint a needlessly pessimistic picture of the problems with our
approach. We know, for example, that without adaptive knot selection, spline
estimates yield an L∞ rate of O�n1/3�n−1h−1 log n�1/2 + h�; here h = 1/J is
the distance between uniformly spaced knots. As noted by Härdle, Marron
and Yang, this expression is optimized when h−1 = J = O�n1/9�log n�−1/3�,
not when J ∼ n1/3 as they used in their theoretical work. Therefore, a fair
comparison between the fixed bandwidth Nadaraya–Watson estimate and the
nonadaptive spline estimate with equally spaced knots indicates that the two
procedures achieve the same asymptotic performance when measured in the
L∞ norm.

As a practical matter, we depend on a mixture of simulated and real data to
guide the development of each new application. For example, when testing the
“deletion-only” version of the LOGSPLINE procedure, we experimented with
various rules for selecting the number and location of the initial knots. If we
apply stepwise deletion starting with too many knots, we encounter an unac-
ceptable number of spurious fits to data drawn from various known densities.
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If the initial number of knots is too small, on the other hand, the procedure is
unable to adapt to the essential features of any but the most regular data sets.
Ultimately, we decided that a sensible default for the LOGSPLINE software
is to place O�n1/5� knots at suitable order statistics. Interestingly enough, the
theoretical inconsistency result derived by Härdle, Marron and Yang fails to
hold unless the initial number of knots is much larger than n1/5.

To summarize, this discussion reinforces the notion that we must be mind-
ful that our adaptive procedure is defined on an underlying spline space and
not on the columns of a particular parameterization of the space. This imme-
diately defines a set of allowable operations on the resulting design matrix
that we must not ignore. Their theoretical treatment also adds support to
the prevailing notion that these procedures are sensitive to the size of the
maximum allowable space and hence that this size must be tuned through
extensive simulation.

We agree with these discussants that kernel and local polynomial methods
will continue to have an enduring attraction to many statisticians. In partic-
ular, it is simple to understand what “vanilla” kernel smoothing does to data,
which is one reason it was used as a rough diagnostic in Kooperberg and Stone
(1991). On the other hand, once we include variable bandwidths [Silverman
(1986)], bandwidth selection [Sheather and Jones (1991)] and transformations
[Wand, Marron and Ruppert (1991)] in kernel density estimation, it loses its
advantages in simplicity, intuitive understanding and mathematical elegance
over logspline density estimation.

These three discussants also question the terminology “polynomial spline”
and would prefer that we use the “older” names of “B-spline” or “regression
spline.” Our use, however, is compatible with the bulk of the literature on
splines, which is in the field of numerical approximation. For example, Schu-
maker (1981) starts out Chapter 9 (which along with the first eight chapters
is about univariate splines) with the following:

In the first eight chapters of this book we have dealt ex-
clusively with polynomial splines. Here and in the follow-
ing two chapters we develop the theory of similar spaces of
generalized splines. We begin this development by studying
Tchebycheffian splines, where, as we shall see, almost all of
the results for polynomial splines can be carried over.

Tchebycheffian splines include, for example, smooth piecewise exponential
functions. It should also be noted that “B-spline” and “polynomial spline” are
not synonymous terms. While B-splines are a basis for certain spaces of poly-
nomial splines in a single variable, in certain methodologies dealing with poly-
nomial splines, a different choice of basis is often more convenient (see Section
5.2). Finally, it seems perverse to us to use “regression spline” to refer to a
polynomial spline model for a log-density function.

Fan. The approximation power of adaptive knot splines makes them at-
tractive tools for modeling functions with unknown smoothness properties
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[Devore and Lorentz (1991)], but the usefulness of these tools in a statistical
context depends on how well knot placement algorithms can be tuned in the
presence of noise. As Fan points out, the general problem of knot placement
is very intricate. The use of Rao and Wald statistics in a stepwise fashion is a
practical attempt to deal with this intricacy while preserving the flexibility of
adaptive knot splines. In order to control the variability of estimation based
on this approach, however, we need to limit the maximum number of knots
and the minimum spacing between knots.

As Fan suggests, in the context of fitting constrained models, additional
ideas may be required to apply our approach and other techniques are some-
times preferable. In particular, Li’s approach to dimensionality reduction is
an attractive alternative to the use of low-order ANOVA models. Our concern
about using the local polynomial method to estimate the effective directions
in Li’s model is that the resulting methodology lacks the simplicity of Li’s
original SIR method. The same issue would arise if we were to substitute our
approach for the local polynomial method in the procedure described by Fan.
However, our approach could be used after the directions have been selected
by SIR.

Fan claims that the smoothing spline approach provides a conceptually sim-
ple solution to the monotone regression problem, but this is not obvious to us.
Ramsay (1988) and Kelly and Rice (1990) provide alternative solutions in-
volving B-splines. When the monotonicity assumption is valid, our approach
should yield estimates that are monotone or nearly so; otherwise, the esti-
mates should provide a warning that this assumption may be invalid.

Some constrained models are naturally handled by our approach. For ex-
ample, in partly linear models without monotonicity constraints, the unknown
function has the form f1�X1�+· · ·+fp�Xp�+ZTβ. Here, to apply our approach
we simply need to enforce the additive and linear constraints in choosing the
allowable spaces.

The surface averaging technique developed by Fan, Härdle and Mammen
(1995) provides a theoretically interesting alternative to our approach in esti-
mating the components in ANOVA models, at least in the regression context. It
is surprising that lack of knowledge of f2 does not cost us anything asymptot-
ically in estimating f1. However, this result depends on smoothness assump-
tions on both f2 and the joint density function of the covariates. Moreover, in
estimating an additive component of the regression function at a single point,
we need to obtain a local linear estimate of the multidimensional regression
function at every “design” point. This necessity makes their procedure com-
putationally intensive. Also, in light of the curse of dimensionality and their
smoothness requirement on the joint density function, we are concerned that
a very large sample size may be needed for their procedure to be competitive
in statistical efficiency with ours. Fan mentions that a special case of their
procedure will estimate the average of the regression surface defined with
respect to a weight function of product form even if their additive model is
misspecified, but we wonder about the motivation for such a weight function
when the covariates may be dependent.
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Gu. The smoothing spline approach to extended linear modeling developed
by Wahba and her school, nicely summarized by Gu in his discussion, is an
attractive alternative to our approach. While both approaches emphasize the
use of low-order ANOVA models to overcome the curse of dimensionality, the
actual implementations are quite different. In the smoothing spline approach,
the penalization technique is used after the various main effect and interac-
tion components in the ANOVA model are specified, with other techniques
being employed to select these components [Wahba et al. (1995)]. This ap-
proach is competitive with ours in applications involving a few covariates, but
it is computationally infeasible in applications such as SOLVD and phoneme
recognition that involve many covariates.

In his discussion, Gu concentrates on a single smoothing parameter λ as
a systematic model index. In the context of fitting low-order ANOVA models,
however, it is more natural to use one such parameter per component. When
there are many smoothing parameters, their automatic selection becomes com-
putationally challenging. In the context of additive regression and additive
generalized regression with polynomial splines, Burman (1990) treated the
adaptive selection of a single smoothing parameter (common number of knots).
Presumably, similar arguments would apply to other extended linear models.

An interesting modification to the adaptive knot spline approach is to per-
form a penalized fit using a basis built by stepwise addition. This alternative
to stepwise deletion was suggested by Hastie [see Buja, Duffy, Hastie and Tib-
shirani (1991)] in his discussion of MARS, and it has been implemented by
Hastie and Pregibon (1990) in the context of shrinking tree models. Luo and
Wahba (1997), cited by Gu, narrow the gap between the smoothing spline and
adaptive knot spline approaches both computationally and philosophically by
considering the stepwise addition of cubic reproducing kernel functions. A pe-
nalized regression is then performed on the smaller basis, reducing the amount
of computation considerably and also improving the local adaptability of the
smoothing spline approach. In the simple univariate regression problems con-
sidered in their paper, for example, they consider adding up to a maximum of
150 such basis functions in problems with samples of size 2048. Interestingly,
the authors state that they realized only small improvements in mean squared
error when a penalized rather than ordinary least squares fit was performed
on the basis built by stepwise addition.

We are pleased to see the many recent and interesting papers on the the-
oretical properties of the smoothing spline approach that were cited in Gu’s
discussion. In these papers, however, the underlying assumptions involve con-
ditions on the eigenvalues and eigenfunctions of certain bilinear forms. In
general, these conditions are collectively very difficult to verify from more
primitive and statistically more natural conditions such as those in Stone
(1994), Hansen (1994) and Kooperberg, Stone and Truong (1995b). This diffi-
culty is heightened in the context of applying the smoothing spline approach
to the fitting of additive and other unsaturated ANOVA models so as to ame-
liorate the curse of dimensionality (see Section 2 of our paper). Chen (1991)
does deal successfully with such heightened difficulties, but only for regres-



1464 REJOINDER

sion. Moreover, for mathematical tractability, he was forced to replace the
random points X1; : : : ;Xn by deterministic points that form a suitably regular
balanced complete factorial design.

Although it is not clear to us exactly what has been rigorously established
in the paper by Shen and Hu that Gu cites, we agree that this paper is a
promising recent development at least in the sense of suggesting a worthwhile
direction for future research.

Hastie and Tibshirani. Hastie and Tibshirani’s example illustrates that
the use of multiple response linear regression is at best a cheap substitute for
POLYCLASS and that it is much better either to use POLYCLASS directly
or to fit a POLYCLASS model with basis functions selected by POLYMARS.
Obviously, the situation in their toy example is not as bad when POLYMARS
is used to select basis functions. In particular, when we applied POLYMARS
to a similar data set, it immediately positioned two knots in each of the two
gaps between classes, so that the fitted probabilities almost exactly matched
the true probabilities. In this example a POLYMARS model with three basis
functions can achieve perfect classification. While POLYCLASS and POLY-
MARS can achieve both “perfect classification” and “perfect probabilities” in
this example, POLYCLASS can do so with fewer basis functions.

The extended linear modeling approach that we have discussed in the cur-
rent paper always considers nonlinear functions of the predictors. This is pre-
cisely to prevent artifacts such as the one presented by Hastie and Tibshirani.

Ignoring computational efficiency, we agree with Hastie and Tibshirani in
strongly prefering POLYCLASS to POLYMARS in the selection of basis func-
tions for use in POLYCLASS because the latter approach would tend to add
basis functions that are ultimately not needed at the POLYCLASS fitting stage
and thus require more basis functions to ensure optimal performance. On the
other hand, we doubt that this tendency is so great that the former approach
should invariably be used whenever it is computationally feasible, despite its
heavy computational premium. This issue deserves investigation.

In any case, we ended up using the combination procedure for the phoneme
recognition example because POLYCLASS itself is not computationally feasi-
ble when applied to such huge data sets with so many classes. Currently, we
are studying the application of the stochastic gradient method to the fitting of
POLYCLASS models. With this approach, the selection of 400 basis functions
using POLYMARS and the fitting of a POLYCLASS model together take less
than 20 h of CPU time (on the Silicon Graphics workstation at our disposal),
which would allow us to experiment with different sets of features and use
more basis functions. (In fact, we have experimented with different sets of fea-
tures and larger models, and we now get test-set error rates of approximately
30%, which is competitive with neural networks.)

Clearly, the density estimation approach proposed by Hastie and Tibshirani
will be feasible for larger data sets than POLYCLASS by itself. For exam-
ple, to apply it to the phoneme recognition data, one would have to estimate
45× 63 = 2835 densities based on sample sizes of 112;115/45 ≈ 2500 on the
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average when no interactions are considered. However, this is actually very
feasible using LOGSPLINE, since this procedure takes only about 10 s of CPU
time when applied to the income data (n = 7125). If we do not increase the
maximum number of basis functions beyond the 25 used for the income data
(and this may be very reasonable since presumably not too much detail in the
density estimates is needed), the CPU time for LOGSPLINE would be linear
in the sample size. Thus the density estimation approach to polychotomous
regression would take approximately 2835×�2500/7125�×10 s ≈ 3 h of CPU
time. Moreover, the computations could easily be divided over a number of
workstations.

A related approach would be to fit separate logistic regressions for each of
the K+1 classes; that is, we would obtain separate estimates of the functions

φ�k�x� = log
P�Y = k�X = x�
P�Y 6= k�X = x� ; 1 ≤ k ≤K+ 1:

We can then set

θ�k�x� = φ�k�x� −φ�K+ 1�x� = log
P�Y = k�X = x�

P�Y =K+ 1�X = x� ; 1 ≤ k ≤K:

As in the density estimation approach, this is a POLYCLASS model. The logis-
tic regression approach could be considered as partial discriminative training.

For the logistic regression approach, we can use the POLYCLASS algo-
rithm, which is quite feasible for very large data sets when there are only
two classes. Kooperberg, Bose and Stone (1997) established that the POLY-
CLASS algorithm requires approximately O�K2P3

maxn� flops independently of
the number of predictors. Thus for the logistic regression approach, we would
have to carry out K+1 times an algorithm that takes O�P3

maxn� flops, so that
we would gain a factor of K. This may not make the approach feasible for the
phoneme recognition data, but it will definitely be applicable to much larger
data sets than will a direct application of POLYCLASS.

3. Some publicly available software. Not surprisingly, the discussants
introduced a number of viable alternative approaches to function estimation in
various extended linear model settings. To practitioners, this diversity can rep-
resent new views of a given dataset and hence the potential for new insights.
Unfortunately, current nonparametric procedures are sufficiently difficult to
implement that without usable, publicly available software, it is unlikely that
a new technique would ever be applied. During our own work to refine the
various spline-based estimates presented in our paper, we have found that
a language like S/S-PLUS allows us easily to share both code and results,
speeding up the entire learning process.

With this in mind, we were naturally led to inquire about the availabil-
ity of software for comparing our approach with those suggested by the dis-
cussants. Both Fan and Härdle, Marron and Yang mention local polynomial
techniques, Härdle, Marron and Yang suggested that kernel procedures are de-
pendable and understandable, and Gu summarized how the smoothing spline
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technology has been applied in many extended linear model settings. We de-
cided to test the practicality of these various approaches by using each one
to estimate the density associated with the income data discussed in Sec-
tion 4 (see Figure 1) of our paper. Locating software that implements each
of these approaches was fairly straightforward: a variety of local polynomial
models can be fitted using LocFit, a collection of routines with a very polite
S/S-PLUS interface being written by Clive Loader [Loader (1996)] and avail-
able from http://cm.bell-labs.com/stat/project/locfit; kernel density estimation
comes with standard S/S-PLUS, and Simon Sheather kindly provided us with
a Fortran subroutine for calculating the Sheather–Jones plug-in (SJPI) band-
width estimate [Sheather and Jones (1991)]; Chong Gu’s RKPK2 is available
on the Web and is packaged with a number of density estimation examples
[Gu (1993)].

Using an IRIS Challenger with twenty 150 MHz IP19 processors, we tried
each procedure on the mean-scaled data used to generate Figure 1 in Sec-
tion 4 of our paper. Based on the experience of Wand, Marron and Ruppert
(1991), we attempted to fit the logarithm of the mean-scaled data as well. The
CPU time for each procedure is recorded in Table 1. The nonadaptive LocFit
time includes the time to select the global bandwidth via BIC. The avail-
able implementations of the adaptive LocFit and smoothing spline procedures
required binning the data before the models could be fitted. Unfortunately,
variable bandwidth selection is not yet implemented for density estimation
in LocFit, but by applying a Poisson approximation we can make use of the
adaptive features implemented for generalized linear models. The smoothing
spline procedure is known to be computationally intensive, requiring O�n3�
operations, so this procedure was not able to deal directly with the income
data having n = 7125. After mapping the income data to the unit interval, we
partitioned the data into 400 equally sized bins and passed these counts to
the variable bandwidth LocFit and the smoothing spline programs. The CPU
times in seconds listed in Table 1 do not include this preprocessing.

The results are compared in Figure 3:

(a) The LOGSPLINE fit from Section 4 of our paper, compared with a new
version of the routine that uses simulated annealing to optimize knot loca-
tions [Hansen and Kooperberg (1997)]. SALSA (simulated annealing logspline

Table 1
CPU times in seconds

Original Data Binned
(n 5 7125) (400 bins)

LOGSPLINE 9.0
LocFit 14.5
Variable bandwidth LocFit 19.7
Smoothing splines 194.2
SJPI 341.0
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Fig. 3. Comparison of various density estimation methods on the income data.

approximation) requires a few minutes CPU time, so it is still competitive
with the slower density estimation routines that are compared in the other
examples.

(b) LocFit applied with both a global, fixed bandwidth (chosen by BIC) and
a variable bandwidth using a Poisson approximation.

(c) The smoothing spline estimate using both log-transformed and untrans-
formed mean-scaled data.

(d) The SJPI estimate using both log-transformed and untransformed
mean-scaled data. (We also tried using the implementation width.SJ of SPJI
mentioned by Venables and Ripley [(1994), page 139], which is available from
statlib, and found that it required similar CPU time. The CPU time for SPJI
could undoubtedly be reduced to some extent by binning.)
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The smoothing spline estimate, the SJPI estimate and the fixed bandwith
LocFit estimate clearly have problems capturing all the elements of the data,
since each of these procedures selects only one (global) smoothing parameter.
To truly capture the height of the spike, each estimate would have to be very
rough near the larger mode and in the tail. In fact, the heights of the spikes of
the smoothing spline and SJPI estimates based on the untransformed data are
reduced by more than 20% from that suggested by the adaptive routines, but
these estimates still produce ripples in other parts of the density. A logarithmic
transformation considerably improves both nonadaptive estimates. We believe,
however, that the efficacy here of such a simple transformation with one global
smoothing parameter is the consequence of a fortuitous “interaction” between
the spike and the tail. [Wand, Marron and Ruppert (1991) considered a two
parameter family of power transformations for kernel density estimation that
yields a very reasonable estimate for the income data.]

Currently, ignoring computing time, we prefer the SALSA estimate. It
seems to have the correct height for the spike. Based on calculations not
reported here, we also feel that the dip near 0.6 has approximately the right
depth. Among the faster procedures, LOGSPLINE and the variable band-
width LocFit (which required binning and using a Poisson approximation)
produce very nice estimates.
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