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Interactions are frequently at the center of interest in single-nucleotide polymorphism (SNP) association studies. When
interacting SNPs are in the same gene or in genes that are close in sequence, such interactions may suggest which
haplotypes are associated with a disease. Interactions between unrelated SNPs may suggest genetic pathways.
Unfortunately, data sets are often still too small to definitively determine whether interactions between SNPs occur.
Also, competing sets of interactions could often be of equal interest. Here we propose Monte Carlo logic regression, an
exploratory tool that combines Markov chain Monte Carlo and logic regression, an adaptive regression methodology that
attempts to construct predictors as Boolean combinations of binary covariates such as SNPs. The goal of Monte Carlo logic
regression is to generate a collection of (interactions of) SNPs that may be associated with a disease outcome, and that
warrant further investigation. As such, the models that are fitted in the Markov chain are not combined into a single model,
as is often done in Bayesian model averaging procedures. Instead, the most frequently occurring patterns in these models
are tabulated. The method is applied to a study of heart disease with 779 participants and 89 SNPs. A simulation study is
carried out to investigate the performance of the Monte Carlo logic regression approach. Genet. Epidemiol. 28:157–170, 2005.
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INTRODUCTION

With many advances in high-throughput se-
quencing techniques, an increasingly large num-
ber of studies are being carried out to associate
clinical outcomes with single-nucleotide poly-
morphisms (SNPs). How to best conduct such a
study and how to analyze the data most effi-
ciently remain open questions.
In this paper, we are concerned with the

situation where we have data on a large number
of genes, with only a few SNPs on each gene.
Those SNPs may have been selected because of
previous research, or maybe as a set of tag-SNPs
[e.g., Johnson et al., 2001; Weiss and Clark,
2002; Sebastiani et al., 2003] that jointly are
sufficient to identify the common haplotypes.
While those tag-SNPs could be used to estimate
the haplotypes in all participants, it is reasonable
to use individual SNPs in an association study
when only a few of those on each gene are
available.

No matter what the exact study design is, when
association studies with multiple SNPs are carried
out, determining whether any interactions be-
tween those SNPs are associated with the outcome
will be of great interest. In the situation where
individual SNPs on multiple genes interact, this
may suggest biological pathways; when SNPs on
the same gene interact, these interactions may
effectively group the haplotypes in those that are
and those that are not associated with the out-
come.
Recently a few methods were proposed for

directly finding interactions between SNPs.
Nelson et al. [2001] proposed a combinatorial
partitioning method to identify combinations of
SNPs that predict a quantitative outcome. In their
approach, a limited number of SNPs is selected
among those at which sequence information is
available. All combinations of those selected SNPs
are further considered. Various combinatorial
arguments make it possible to apply this approach
to fairly sizable data sets. Ritchie et al. [2001]
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extended this methodology and applied it to a
breast cancer data set. Both approaches tried to
identify combinations of SNPs that are associated
with disease status, without being concerned with
generating a parsimonious, interpretable rule. It is
not clear whether these techniques could be
applied to data with hundreds of SNPs, as likely
will be collected in the near future. Zee et al.
[2002] also first selected a smaller number of SNPs
among those that are available. They then used a
logistic regression model with stepwise model
selection. We discuss this approach below in
Comparison to Stepwise Selection, as they ana-
lyzed the same data as we do in this paper. Hoh
and Ott [2003] provided an overview of multi-
locus approaches to localizing complex human
trait genes. Their paper discussed the above-
mentioned techniques as well as related ap-
proaches using family data or haplotype data.
In most published studies, few interactions

between SNPs were identified. There may be
several reasons for this. While high-throughput
sequencing technologies have made it much easier
to collect a large number of SNPs, many of the
data sets analyzed are still relatively small, and
combined with a multiple comparisons correction
of significance tests, this implies that there is
limited power to identify interactions with mod-
erate effects. In such a situation, perhaps the
best strategy is to identify a small number of
combinations of SNPs that are potentially asso-
ciated with an outcome. Ideally, in other studies,
hypotheses based on these results can be further
investigated.
Such a hypothesis-generating analysis is differ-

ent from a confirmatory analysis. Putting it
simply, we are not interested in identifying a
single model (that is significant at, say, the 5%
level), but we want to identify a larger number of
alternative models. Each of these models indivi-
dually may not stand up to a rigorous 5%
significance cutoff, but jointly there may be strong
evidence that there is an association. Such a
limited number of associations can then be
examined using other data sources.
Logic regression [Ruczinski et al., 2003] is a

generalized regression method that is intended for
situations where most covariates are binary. It was
successfully applied to SNP data [Kooperberg
et al., 2001]. As designed, logic regression is a
methodology that tries to determine a single
model which may involve various combinations
of SNPs that are associated with a clinical out-
come. Because of the rigor with which model

selection is carried out to correct for multiple
comparisons, in situations where the true effects
are small, the power to identify higher-order
interactions is limited.
In this paper, we describe a new methodology,

Monte Carlo logic regression. This methodology
combines logic regression and Markov chain
Monte Carlo (MCMC) model selection to identify
a larger group of SNPs that are potentially
associated with a clinical outcome. As opposed
to the methods described above, including logic
regression, the goal in Monte Carlo logic regres-
sion is not to identify a single ‘‘best’’ model that
relates SNPs to the clinical outcome of interest.
Instead, the new approach explores a large
number of potential logic regression models using
an MCMC mechanism. The idea is that those
models that are identified frequently during the
MCMC iterations are good candidates for follow-
up studies. We apply the method to data on a
study of heart disease [Hoh et al., 2001; Zee et al.,
2002] where 89 SNPs in 62 candidate genes were
genotyped for all 779 heart disease patients. A
simulation study illustrates some of the strengths
and weaknesses of the proposed approach.

BACKGROUND: LOGIC
REGRESSION FOR SNP DATA

Logic regression is a generalized regression
method that is intended for situations where most
covariates are binary, such as is the case for SNP
data. Logic regression is described in detail in
Ruczinski et al. [2003]. Monte Carlo logic regres-
sion, which is introduced in this paper, uses logic
regression models. However, both the selection of
those models, and the interpretation of the results,
are very different for both approaches.
Let Y be a phenotype trait which can be either

binary (e.g., diseased vs. nondiseased) or quanti-
tative (e.g., blood pressure). The logic regression
model is

g½EðYjXÞ� ¼ b0 þ
XK

i¼1

biLiðXÞ ð1Þ

where g is an appropriate link function, X are the
covariates, b0 ,y, bK are parameters, and the Li(X)
are Boolean combinations of the covariates, such
as Xc

1 ^ ðX2 _ X3Þ. We refer to the Li as a logic tree,
as the Li are organized in a tree form; see Figure 1.
Using this ‘‘logic tree’ representation, it is
possible to obtain any other logic tree by a finite
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number of operations such as growing of
branches, pruning of branches, and changing of
leaves; see Figure 1.
In regular logic regression, these logic trees are

selected adaptively, using a simulated annealing
algorithm. We start with L¼0. Then, at each stage
a new tree is selected at random among those that
can be obtained by simple operations on the
current tree. This new tree always replaces the
current tree if it has a better score than the old
tree, and otherwise is accepted with a probability
that depends on the difference between the scores
of the old and the new tree, and the stage of the
algorithm. Early on, trees with considerably worse
scores are still accepted, while toward the end of
the algorithm, the probability of accepting a tree
with a worse score becomes eventually almost
zero. In this simulated annealing algorithm, each
covariate could end up in multiple trees. Note that
the dimensionality of the model (1) is not the
number of covariates, which may be very large,
but the number of parameters, which is the
number of logic trees plus one, and is usually
small.

As the best fitting model typically overfits the
data, model selection is of critical importance.
Logic regression model selection is carried out
using cross-validation. For cross-validation, the
data are repeatedly split in a training and test set.
Logic regression models with various numbers of
logic trees and various numbers of terms in those
trees are fit on the training data. The model size
which has the best score on the test data is then
selected, and a model of that size is computed on
the complete data. Alternatively, a set of rando-
mization tests can be used to avoid this overfitting
problem [Ruczinski et al., 2003].
For SNP data, one could let each individual SNP

take values 0, 1, and 2 for the number of variant
alleles at the respective SNP. Alternatively, we
propose to code an SNP Si into two binary
covariates: Xi1¼1 if the SNP has at least one
variant allele, and Xi2¼1 if it has two variant
alleles; both are 0 otherwise. One can see that Xi1

codes the dominant effect of SNP Si, and Xi2 codes
the recessive effect of SNP Si. This coding has the
advantage that each xij, j¼1, 2, corresponds
directly to the mode of the genetic effect of SNP
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Fig. 1. Logic tree representation of Xc
1^ðX2_X3Þ, and permissible moves for logic trees. We use white numerals on black background to

indicate complement of a covariate. Starting tree is at lower left. Moves are illustrated in a–f.
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Si. We applied logic regression successfully to the
simulated SNP data of the Twelfth Genetic
Analysis Workshop and a study of heart disease
using this coding [Kooperberg et al., 2001;
Ruczinski et al., 2004]. In the simulated data set,
all mutations were correctly identified without
any false positives.
Two limitations of logic regression are that: (1)

logic regression identifies a single best model as in
equation (1), while in practice there may be
alternative models that fit the data almost equally
well; and (2) if a covariate X is highly correlated
with a covariate that is selected by the simulated
annealing algorithm, then X will likely not end up
in the model, while in practice the data at hand
may not be able to distinguish between the two
‘‘competing’’ covariates. This is an important issue
in analyzing SNP data, as SNPs are frequently
observed in linkage disequilibrium. Below, we
describe an alternative methodology to address
these problems.

METHODS: MONTE CARLO LOGIC
REGRESSION

The goal of Monte Carlo logic regression is to
identify all models and combinations of covariates
that are potentially associated with the outcome,
rather than to construct a single model to predict
the outcome. We adopt Bayesian model selection
techniques, using Markov chain Monte Carlo
(MCMC) to explore a large number of good-fitting
models. Unlike many Bayesian model selection
problems, where the models that are visited in an
MCMC run are averaged to construct predictors
that are better than individual covariates, we
construct summary measures describing features
of all models that were visited.
Specifically, our implementation uses the rever-

sible jump MCMC algorithm of Green [1995]. We
select a prior on the model size and a prior on all
logic regression models of a given size. The size of
the model is defined as

PK
i¼1 jLij, where |Li| is the

number of terminal nodes in the logic tree Li. For
example, the model b0 þ b1ðX1 _ ðX7 ^ Xc

13ÞÞ þ
b2X3 has size four. In Hansen and Kooperberg
[2002], it was argued that for polynomial spline
routines, a geometric prior on model size has the
effect of an Akaike Information Criterion (AIC)-
like penalty of the form �2� log-likeli-
hoodþa� (number of parameters). This is no
longer true for logic regression, as the number of
parameters of the model does not need to increase

with model size. (Note that in the example above,
the model has three parameters.) From a practical
viewpoint, however, using a geometric prior still
makes sense: models with a larger size typically
overfit the data, and thus smaller models are
preferred.
The prior on model size does influence the total

number of SNPs selected, and thus in a Bayesian
sense the probability that a SNP is associated with
the outcome depends on the choice of the prior.
However, as we will see in our analysis, the actual
choice of the prior on the model size has little
influence on which SNPs occur most often in the
models that are selected; and the relative ordering
of the SNPs is what drives most of our analysis.
We use a uniform prior on all logic regression

models of a particular size. This requires us to
count the number of possible logic regression
models of a particular size. As we are less
interested in the coefficients bi than in the selected
logic trees Li in equation (1), we choose not to put
a prior on the coefficients bi, but rather use the
method of maximum likelihood to estimate them.
Formally this makes our Monte Carlo logic
regression algorithm not a Bayesian logic regres-
sion algorithm.
Having selected priors, a reversible-jump

MCMC algorithm is a modification of the simu-
lated annealing algorithm of Ruczinski et al.
[2003]. That is, at each stage of the algorithm we
select one of the logic trees at random to modify,
and for that tree we select one of the moves that
are shown in Figure 1, according to prespecified
selection probabilities depending on which of
these moves are in fact possible. Some of these
moves require the selection of other quantities,
such as which specific covariate will enter the
logic tree. Note that not all types of moves may be
possible at each time. After a new model is
selected, we compute the likelihood ratio, the
prior ratio, and the posterior ratio [Green, 1995].
Details of implementing a reversible-jump algo-
rithm in a similar problem can be found in
Denison et al. [1998]. A few more details of our
algorithm can be found in the Appendix. Our
algorithm is implemented in Fortran and C with
an interface to R and S-Plus and is publically
available.
Burn-in and mixing of the MCMC algorithm can

be examined by monitoring summary statistics
such as the size of the model land when certain
particularly simple models (e.g., the null model
and models consisting of one logic tree with
one particular covariate) are visited. In all our
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examples, these statistics suggest that a short
burn-in is sufficient, and that chains mix well.
However, because of the size of the model space, a
long chain after burn-in may still be required.

IDENTIFYING INTERESTING FEATURES

The goal for Monte Carlo logic regression is not
to identify a single best model, but to identify
potential factors that are associated with an
outcome. Different Boolean expressions may be
logically identical, and there are no universal
algorithms to reduce Boolean expressions. The
effect of this is that the number of logic regression
models that are visited by the Monte Carlo logic
regression algorithm can be huge. Thus, instead of
summarizing all those models, we gather some
simple statistics about their size, and how often
individual SNPs and certain combinations of
SNPs occur in them.

K Distribution of size of models. Typically the
average model size of the models visited by the
Monte Carlo logic regression algorithm will be
larger than the average of the prior distribution
for the size of the model, even if there is no
signal in the data. Thus, rather than to compare
the average model size to the prior model size,
a better comparison for the average model size
is the average model size on a data set in which
the response has been randomly permuted.
This is just a common randomization test: if the
average model size of the Monte Carlo logic
regression algorithm applied on the real data
after burn-in is larger than the average model
size of the same algorithm applied to the
permuted data, the covariates are likely jointly
related to the outcome.

K Fraction of models that contain a particular
covariate (SNP). Covariates may interact with
other covariates in their association with the
outcome, but by themselves have little margin-
al association. The fraction pi of the models that
include a covariate Xi is a direct measure of the
importance of this covariate for predicting the out-
come, rather than just its marginal association.

K Fraction pij of models that include a pair of
SNPs, Xi and Xj, in the same logic regression
tree. This quantity summarizes whether an
interaction between two covariates may be
associated with the outcome of interest. If the
two SNPs are in the same logic regression
model, but not in the same logic tree, this
suggests no interaction.

K Similarly, we can count how often triplets,
quadruplets, and so on, of covariates occur
jointly in logic trees.

RESULTS

We apply Monte Carlo logic regression to data
from a study of heart disease [Hoh et al., 2001; Zee
et al., 2002]. Among 779 heart disease patients, 342
showed restenosis (a renarrowing or blockage of
an artery at the same site where treatment has
already taken place) 6 months after angioplasty,
while the other 437 did not. All individuals were
genotyped for 89 SNPs in 62 candidate genes that
were previously associated with heart disease.
Each SNP is coded by two binary covariates, one
for the dominant and one for the recessive effect
of the SNP. After removing covariates with no
variation, this yielded a total of 169 binary
covariates. As for most genes there are only one
or two SNPs, these data do not exhibit much
linkage disequilibrium (except for one gene noted
below), and we focus our discussion on the
identification of which SNPs are associated with
restenosis. We will discuss a situation with linkage
disequilibrium in the simulation study.
In Ruczinski et al. [2004], the same data were

analyzed using logic regression, considering mod-
els with at most three logic trees and up to eight
terms. Based on model selection using cross-
validation and randomization tests, a model with
one logic tree and four terms was selected:

ðTP53ðP72RÞcd^CBSðI278TÞ
c
rÞ _ CD14d _ADRB3r

ð2Þ

where the subscripts d and r refer to the dominant
and recessive coding of the particular SNP,
respectively. It was also concluded that beyond
the inclusion of TP53(P72R)d and CD14d in the
model, the selection of a single model was not
clear-cut, and that various other SNPs may be
associated with restenosis as well.

MONTE CARLO LOGIC REGRESSION

We ran the Monte Carlo logic regression
algorithm using models with at most K¼1, 2, 3, 4
logic trees and a prior on the model size S with
P(S¼i)p ai, i¼0, 1, 2,y, and with the parameter
a¼1/O2, 1/2, and 1/3. Note that E(S)¼a/(1�a).
For each of these 12 combinations of K and a, we
ran three MCMC chains of 5,000,000 models, after
a burn-in of 10,000 iterations. (One such chain
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took about 15 min of CPU time on one Intel
2.4GHz processor.) We also ran chains of 5,000,000
models and 10,000 burn-in iterations, using 25
data sets for which the response was randomly
permuted for the same choices of K and a.
Diagnostic plots suggested that this burn-in was
more than sufficient, as some of the more
common models (e.g., the null model) are reg-
ularly visited during the burn-in and throughout
the iterations. Monitoring of the model size also
allowed us to conclude that the chains never got
stuck.
Table I shows the posterior model size over the

all chains for the real data and the permuted data
after burn-in together with the prior model size.
One can see that the average posterior model sizes
for the real data are substantially larger than the
corresponding ones for the permuted data, sug-
gesting that there is signal in the data. The
difference between the posterior model size for
the permuted data and the prior model size gives
some indication of the amount of overfitting in the
model selection. Thus, this implies that half or
more of the signal in the posterior model for the
real data may be due to overfitting. As the
posterior model sizes for the real data for models
with up to four trees are only slightly larger than
those for models with up to three trees for each a,
we conclude that using at most K¼3 logic trees is
probably sufficient to model the data.
Table II shows the fraction pi for the top 15

SNPs that occur most frequently in the models
after burn-in. For models with at most K¼3 trees
and a¼1/O2 and models with at most K¼2 trees
and a¼1/3, the top 15 SNPs are actually the same,
although the ordering differs slightly. There was a
large amount of agreement between all (a,K)
combinations, as at least 13 of these 15 SNPs in
Table II were among the top 15 SNPs for other
combinations of (a, K).
One SNP (TNFR1) has both its recessive and

dominant coded variables among the top 15 SNPs
in Table II. The CBS gene has two different SNPs
in Table II. In fact, these two SNPs are in close
linkage disequilibrium, and differ only for 3 of the
779 people in the study. The four SNPs in
the regular logic regression model (2) are all in
Table II.
Table III shows the top seven pairs of SNPs

Xi and Xj for which the fraction pij of the models
that include both SNPs in the same logic tree was
the highest, for the same two (a, K) combinations
as in Table II. These fractions give an indication
whether an interaction between two SNPs is

associated with the outcome. As two SNPs that
are frequently in models would be expected to
occur more often together in the same logic tree by
chance, we compare the observed fraction by an
estimate of the expected fraction ~ppij of times that
these SNPs would occur together if SNPs were
selected independently with probabilities propor-
tional to pi and pj. Set ~ppij ¼ gpipj, where pi and pj
are the estimates of the marginal posterior
probabilities (e.g., as shown in Table II), and g is
a proportionality constant to ensure thatP

ij pij ¼
P

ij ~ppij. The magnitude of the ratio pij=~ppij

TABLE I. Average posterior model sizea

Maximum number of fitted logic trees

a Mean of prior 1 2 3 4

Actual data: mean over 3 chains
1/O2 2.41 3.02 5.07 6.34 7.04
1/2 1.00 1.76 2.24 2.48 2.55
1/3 0.50 1.05 1.13 1.24 1.28
Mean over 25 randomizations
1/O2 2.41 2.71 4.37 5.05 5.50
1/2 1.00 1.58 1.91 1.97 2.09
1/3 0.50 0.93 1.03 1.05 1.09

aFor both actual data and randomizations, SD of realizations is
about 10% of mean. For all a and K, mean for actual data is
significantly different from randomizations at Po10�5, based on
a t-test treating each chain and randomization as a single
independent observation.

TABLE II. Fraction pi of models that include particular
SNP Xi for top 15 SNPs for which this fraction is largest

Fraction of times included in model

SNP K¼3 trees, a¼1/O2 K¼2 trees, a¼1/2

TP53(P72R)d
a,b 0.379 0.200

CD14d
a,b 0.353 0.201

MDM2d
b 0.135 0.054

CBS(I278T)r
a,b 0.132 0.054

TNFR1d
b 0.119 0.055

CBS(68bp ins)r 0.112 0.046
IL4RA(150V)r 0.110 0.048
TNFR1r

b 0.105 0.042
APOC3(T3206G)d 0.096 0.038
LTAr 0.076 0.032
GNBd 0.073 0.026
ADRB3r

a 0.064 0.025
NOS3r

b 0.063 0.026
LPA(G21A)d 0.055 0.024
ITGB3r 0.053 0.023

aSNPs in regular logic regression model of Ruczinski et al. [2004].
bSNPs in model of Zee et al. [2002]; their model also included
APOC3(C1100T).
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suggests the extent to which an interaction
between SNPs Xi and Xj is present.
We note from Table III that, as expected, the two

SNPs with the highest pi, TP53(P72R)d and CD14d,
appear most often jointly in a logic tree. However,
the third most occurring pair of SNPs, TNFR1r
and APOC3(T3206G)d, were only the eighth and
ninth SNPs in the marginal ordering. Thus, an
interaction between these two SNPs would be a
good target for further investigation.
If two SNPs are highly correlated, an interaction

between those two SNPs will occur much less
often than would be expected by chance, because
when one SNP is in the model, the second SNP
will add little information, and our model selec-
tion strategy will prefer a smaller model without
the second SNP. An example is the combination of
CBS(I278T)r and CBS(68bp ins)r . These two SNPs,
which differ only in 3 of 779 people in the study,
would be expected to be jointly in a logic tree ~ppij ¼
0:80% of the time. However, they only occur
together pij¼0.17% of the time for a¼1/O2 and
K¼3. Other than the two CBS SNPs, there is little
linkage disequilibrium in our data, as most genes
have only one or two SNPs. One of the models in
our simulation study (model 1) was specifically
created to study how Monte Carlo logic regression
works when SNPs are highly correlated.
Interactions among triplets of SNPs can be

judged similarly. However, no ‘‘expected’’ fraction
combining the univariate fractions pi and the
pairwise fractions pij exists, as there is no simple
‘‘trivariate independence’’ model based on uni-
variate and bivariate frequencies, other than
complete independence, which is no longer
appropriate if the covariates are not pairwise
independent. The two most frequently occurring
triplets are (TP53(P72R)d, CD14d, CBS(I278T)r) and

(TP53(P72R)d, CD14d, CBS(68bp ins)r), which
occur 2–3 times more than the next triplet; see
Table IV. As the two CBS SNPs are identical for
almost all people, these two triplets are in fact
almost identical as well. Thus, a three-way
interaction between CD14, TP53(P72R), and the
CBS gene would appear to be a worthwhile target
for further investigations.
Typically the result of a Monte Carlo logic

regression simulation model will not be a single
model, but rather a collection of tables like Tables
I–IV. Instead, if a single logic regression model is
desired, we may be better off using logic regres-
sion. The results of the Monte Carlo logic re-
gression analysis suggest; however, that a model
with predictors X1 ¼ ðTP53ðP72RÞd _ CBSðI278TÞrÞ
^CD14cd, X2 ¼ TNFR1r _APOC3ðT3206GÞd, X3¼
MDM2d, and X4¼TNFR1d should fit the data
reasonably well. The summary of this model can
be found in Table V. This model includes the top
five SNPs in Table II, the top four two-SNP
interactions in Table III, and the top three three-
SNP interactions in Table IV. In Table V, we
summarize a logistic regression model with these
four predictors for how many people in the data

TABLE III. Fraction of times that two SNPs are included in same logic tree (pij, observed), compared to how often those
SNPs would be expected to be jointly in model because of marginal fractions (~ppij, expected) and ratio between these two
columns, for seven combinations with largest pij

K¼3 trees, a¼1/O2 K¼2 trees, a¼1.2

SNP 1 SNP 2 Observed Expected Ratio Observed Expected Ratio

TP53(P72R)d CD14d 0.1816 0.0721 2.52 0.0837 0.0374 2.23
TP53(P72R)d CBS(I278T)r 0.0770 0.0269 2.85 0.0275 0.0100 2.77
TNFR1r APOC3(T3206G)d 0.0736 0.0055 13.42 0.0304 0.0015 20.16
CD14d CBS(I278T)r 0.0612 0.0251 2.43 0.0235 0.0100 2.34
TP53(P72R)d CBS(68bp ins)r 0.0610 0.0229 2.67 0.0217 0.0085 2.55
CD14d CBS(68bp ins)r 0.0469 0.0213 1.60 0.0177 0.0086 1.26
TP53(P72R)d MDM2d 0.0444 0.0277 1.60 0.0128 0.0101 1.26

TABLE IV. Fraction of times that three SNPs are together
in same logic tree for three combinations with largest
fraction

K¼3 trees,
a¼1/O2

K¼2 trees,
a¼1/2

SNP 1 SNP 2 SNP 3 Observed Observed

TP53(P72R)d CD14d CBS(I278T)r 0.0581 0.0223
TP53(P72R)d CD14d CBS(68bp ins)r 0.0439 0.0167
TP53(P72R)d CD14d APOC3(T3206G)d 0.0204 0.0073
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set this predictor was ‘‘true,’’ and the unadjusted
odds ratio associated with each of these predic-
tors. We note that some of these predictors are
associated with substantially altered risk. The t-
statistics do not adjust for multiple comparisons,
and in fact, a conservative Bonferroni correction
would leave each of these four predictors sugges-
tive, but not statistically significant. Of additional
interest is that the three-factor interaction in this
model is considerably more significant than each
of the three predictors by themselves: TP53(P72R)d
equals 1 for 53.1% of the people in this study and
has an odds ratio of 1.499, CD14d equals 1 for
21.7% of people in this study and has an odds
ratio of 0.599, and CBS (I278T)r equals 1 for 20.0%
of people in this study and has an odds ratio of
1.450.
We postulate this model, as it seems a reason-

able summary of the Monte Carlo logic regression
analysis, and these SNPs and interactions appear
worthwhile for studying in other populations
using a more traditional hypothesis-testing ap-
proach. (An additional use of this model is for one
of the simulation studies.) Which of these factors
would stand up to such a second analysis remains
open. In fact, we would be surprised if all
predictors were confirmed but also if none were
confirmed. As for almost all genes in the rest-
enosis data, we have one or two SNPs, and in fact
all of the SNPs involved in the model summarized
in Table III come from different genes, and so the
model in Table III does not relate to any particular
haplotype. The inheritance pattern of this model is
a mixture of dominant (SNPs with subscript d) and
recessive (SNPs with subscript r).

COMPARISON TO STEPWISE SELECTION

Zee et al. [2002] used a stepwise logistic
regression approach to select low-order interac-
tions. Unfortunately, the way that they coded
SNPs makes a direct comparison with our analysis
impossible. In particular, the authors created
numerical predictors by coding each SNP as 1, 2,

or 3, corresponding to whether there were 0, 1, or
2 variant alleles, respectively, in the SNP. The
authors selected a model which included both
quadratic terms and interactions using this cod-
ing, without the inclusion of lower-order terms.
This modeling strategy makes the selection of
which SNPs are included in the model dependent
on the coding. Nevertheless, from Table II we
conclude that most of the SNPs selected in the
current analysis agree with those selected by
Zee et al. [2002].
Instead, to allow for a direct comparison

between the proposed approach and stepwise
logistic regression, we carried out a stepwise
addition and deletion approach using the same
169 covariates as we used for the Monte Carlo
logic regression. During the stepwise addition
stage at each step, we selected among all
covariates that were not yet in the model, and all
interactions of two covariates that were in the
model. After reaching a model with 40 functions,
we proceeded with stepwise deletion. The best
model size was selected using 10-fold likelihood
cross-validation. This stepwise procedure is easily
carried out using the Polyclass procedure
[Kooperberg et al., 1997].
As can be seen from the model summary in

Table VI, all but one of the covariates in this model
were also among the most frequently selected
SNPs and interactions by Monte Carlo logic
regression shown in Tables II and III. However,
there are some notable omissions, in particular
the TNFR1r _APOC3ðT3206GÞd interaction and
TNFR1d. Note that there are no three-way inter-
actions in the stepwise model. This is no surprise,
as there is little possibility to include an A�B�C
interaction in a logistic regression model that is
selected using stepwise addition: a selection of
such an interaction would require that first A, B,
C, A�B, A�C, and B�C are in the model before
we consider the three-way interaction. Thus, if the
model in Table VI is the model from which
stepwise addition is carried out, not a single
three-way interaction would be considered.

TABLE V. Logistic regression model using predictors suggested by Monte Carlo logic regression

Predictor Coefficient SE t-statistic Frequency Marginal odds ratio

1 �0.424
X1 ¼ ðTP53ðP72RÞd _ CBSðI278TÞrÞ ^ CD14cd 0.804 0.150 5.38 48.5% 2.283
X2 ¼ TNFR1r _APOC3ðT3206GÞd �1.817 0.479 �3.79 5.3% 0.153
X3¼MDM3d �0.545 0.231 �2.36 13.1% 0.599
X4¼TNFR1d �0.543 0.212 �2.57 15.8% 0.615
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SIMULATION

Here we discuss two simulation studies. In the
first simulation study, we further explore the
performance of Monte Carlo logic regression on
the restenosis data. In particular, we will compare
the results of Monte Carlo logic regression on the
actual restenosis data with the performance on
data sets that were generated from a known
model that fits the restenosis data. The second
simulation study is more traditional, in that we
generate data from several models, and compare
the performance of Monte Carlo logic regression
to two other methods.

RESTENOSIS DATA

Here we describe a simulation study to show
that Monte Carlo logic regression usually identi-
fies true interactions at a higher frequency than
most noise interactions, assuming that signal is
present in the data. Using the original SNP data,
25 sets of outcome data from the model summar-
ized in Table V were generated. We use this model
as our ‘‘true’’ model from which we generate new
data. For each of these data, Monte Carlo logic
regression with (K¼3, a¼1/O2) and (K¼2, a¼1/2)
was carried out. The model from which the data
were generated could be fit as a logic regression
model with four logic trees, or as a logistic
regression model with up to third-order interac-
tions. In the existing simulation, we only consider
modeling with up to two or up to three logic trees,
so in fact the ‘‘true’’ model cannot be fit by logic
regression. Monte Carlo logic regression can do a

better job, as different logic trees will be in the
model at different times during the iterations.
As in the analysis of the original data, for each

data set and combination of (a, K), we ran three
independent chains of length 5,000,000 after a
burn-in of 10,000 iterations. In the simulations, we
would expect the seven SNPs involved in the
predictors listed in Table V, as well as CBS(68bp
ins)r (as this SNP is virtually identical to
CBS(I278T)r) to occur considerably more fre-
quently than other SNPs. Similarly, we would
expect the six two-factor interactions between
(TP53(P72R)d and CBS(I278T)r), (TP53(P72R)d and
CD14d), (CBS(I278T)r and CD14d), (TP53(P72R)d
and CBS(68bp ins)r), (CBS(68bp ins)r and CD14d),
and (TNFR1r and APOC3(T3206G)d) and the two
three-factor interactions between (TP53(P72R)d,
CD14d, and CBS(I278T)r) and (TP53(P72R)d,
CD14d, and CBS(68bp ins)r), to occur more often
than other interactions. We thus counted how
often these single SNPs were among the top
selected SNPs, how often these two SNP interac-
tions were among the top two SNP interactions,
and how often these three SNP interactions were
among the top three SNP interactions. As the
results were virtually identical for (K¼3, a¼1/O2)
and (K¼2, a¼1/2), we only show the results for
(K¼2, a¼1/2). The results are summarized in
Table VII. The results confirm our analysis. All the
SNPs and interactions of SNPs that should have
been selected were selected frequently. In fact, no
other individual SNPs or interactions were
selected that often. This suggests that if there is
an effect in the data, the covariates involved with
those effects are typically among the leading
effects selected by Monte Carlo logic regression.

OTHER MODELS

To further compare the performance of Monte
Carlo logic regression with stepwise logistic
regression and logic regression, we generated
data from five models. For each of the models,
we generated 500 data sets with 1,000 individuals
and 50 SNPs each. Each SNP was in Hardy-
Weinberg equilibrium, with a probability of 0.25 of
mutant alleles. We created linkage disequilibrium
between SNPs 1–6 and between SNPs 7–12 by
making correlations cor(Xi, Xi+1)¼0.95 for i¼1, 2, 3,
4, 5, 7, 8, 9, 10, 11, and cor(Xi, Xi+1)¼0 otherwise. Xi

and Xi+2 are independent, given Xi+1 for all i. Here
Xi is the number of mutant alleles for the ith SNP.
We recoded each SNP Xi in a dominant and a
recessive binary predictor Xd

i and Xr
i , respectively,

TABLE VI. Logistic regression model selected using
stepwise procedure

Predictor Coefficient SE t-statistic

1 �0.565 0.188 �3.01
IL4RAr 0.590 0.183 3.23
TP53(P72R)d 0.432 0.152 2.84
CD14d �0.472 0.189 �2.49
LPA(G121A)d �1.454 0.652 �2.23
APOC3(C1100T)r �0.376 0.154 �2.45
CBS(I278T)r 1.501 0.343 4.38
GNB3d �0.681 0.248 �2.75
MDM2d �0.398 0.284 �1.40
IL4RAr�CBS(I278T)r �1.271 0.407 �3.12
CBS(I278T)r�MDM2d �1.673 0.609 �2.75
GNB3d�MDM2d 1.392 0.624 2.23
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as before. The five models which we generated for
each data set were

Mod 1: logit(P(Y¼1))¼�2+1.2ðXd
3 ^ Xd

9Þ,
Mod 2: logit(P(Y¼1))¼�1.4+0.4Xd

13,

Mod 3: logit(P(Y¼1))¼�1.4+0.6ðXd
14 _ Xd

15Þ,
Mod 4: logit(P(Y¼1))¼�2+0.5Xd

16þ0.25Xd
17

þ0:5ðXd
16 ^ Xd

17Þ, and
Mod 5: logit(P(Y¼1))¼�2+0.5Xd

16þ1(Xd
16 ^ Xd

17Þ.

The methods that we are comparing are logic
regression with the number of trees and the
number of leaves selected using cross-validation,
stepwise logistic regression as implemented in
Polyclass [Kooperberg et al., 1997], with the model
complexity selected using cross-validation as well
as with the model complexity selected using
Bayesian Information Criterion (BIC), and Monte
Carlo logic regression with K¼2 and a¼2, based

on a single run of 5,000,000 iterations and 10,000
burn-ins. (We also ran computations for Monte
Carlo logic regression with K¼3
and a¼1/O2, and as the results were very similar
to those for K¼2 and a¼1/2, we omit those
results.)
In Table VIII, we show how often out of 500

simulations each of the approaches selects the
‘‘right’’ interaction (main effect for model 2) with
or without additional false positives. For Monte
Carlo logic regression, we show how often the
right interaction is selected if we require an
interaction to be in at least 10% or 15% of the
models after burn-in. In addition, for each model
we determined the threshold for Monte Carlo
logic regression to have the same number of
simulations with the ‘‘correct interaction with or
without additional false’’ as logic regression (LR).
This approach is referred to as ‘‘Monte Carlo LR
(match-LR).’’ The corresponding thresholds were
23.4%, 25.6%, 10.0%, 11.6%, and 22.0% for models
1, 2, 3, 4, and 5, respectively.
In Table VIII we also show the results for

Polyclass with a penalty parameter selected
separately for each model, such that the number
of runs for which the ‘‘correct interaction with or
without additional false positives’’ is selected
exactly matches this number for regular logic
regression. This choice is referred to as ‘‘Polyclass
(match-LR).’’ The corresponding penalty para-
meters for Polyclass were 8.80, 5.22, 4.055, and
5.98 for models 2, 3, 4, and 5, respectively. For
model 1, the smallest Polyclass penalty possible of
0 only yielded 103 models that included the
correct interaction. For BIC, the Polyclass penalty
is log(sample size)¼log(1,000)E6.91.
In Table IX, we show how often out of these 500

simulations only incorrect interactions or no
interactions (main effects for model 2) were
selected. Note that for each model/method

TABLE VII. Summary of simulation study for (K¼2,
a¼1/2)a

Single SNPs
TP53(P72R)d 19 CBS(I278T)r 14
CD14d 19 TNFR1r 13
APOC3(T3206G)d 17 CBS(68bp ins)r 10
CBS(I278T)r 14 MDM2d 9

Two-SNP interactions
TNFR1r APOC3(T3206G)d 14
TP53(P72R)d CD14d 12
TP53(P72R)d CBS(I278T)r 7
CD14d CBS(I278T)r 6
TP53(P72R)d CBS(68bp ins)r 6
CD14d CBS(68bp ins)r 5

Three-SNP interactions
TP53(P72R)d CD14d CBS(68bp ins)r 9
TP53(P72R)d CD14d CBS(I278T)r 9

aTabulated are number of occurrences in top 8 (top 6, top 2) for
single SNPs (two-way interactions, three-way interactions) that
are part of correct model in 25 runs.

TABLE VIII. Frequency that correct interaction terms (main effects for model 2) are part of selected model in simulation
study

Models with or without false positives Models without false positives

Method 1 2 3 4 5 1 2 3 4 5

Logic regression 130 188 90 137 333 103 96 59 92 223
Polyclass (CV) 37 89 34 31 188 22 11 18 15 111
Polyclass (BIC) 72 259 43 43 294 69 120 40 40 274
Polyclass (match-LR) N/A 188 90 137 333 N/A 151 57 26 268
Monte Carlo LR (10%) 240 286 90 147 372 22 126 68 114 203
Monte Carlo LR (15%) 190 245 80 129 352 56 149 66 109 238
Monte Carlo LR (match-LR) 130 188 90 137 333 81 157 68 112 269
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combination, the numbers on the left side of Table
VIII plus both sides of Table IX add up to 500. In
Table X, we show how often logic regression and
Monte Carlo logic regression selected an incorrect
three-way interaction.
For model 1, there is linkage disequilibrium

between the ‘‘correct’’ SNPs and nearby SNPs. As
such, it is no surprise that all methods have a large
number of false positives. In fact, the large
majority of false positives for each method involve
the SNPs with which SNPs 3 and 9 are correlated.
When we fix the number of models that include
the correct interaction with or without false
positives, logic regression appears to outperform
Monte Carlo logic regression. However, we
believe that in a situation in which there is
substantial linkage disequilibrium, it is advanta-
geous if a model selection methodology identifies
not just a single model, but several related models.
A researcher would then be confronted with
several comparable models that are closely re-
lated, and thereby would be drawn to the
conclusion that the data at hand may sometimes
not be sufficient to distinguish between several
closely related SNPs. To investigate whether each
of the methods would facilitate such an analysis,
we show in Table XI for each of the methods
how many of the 500 simulations for model 1
involve none, exactly one, and more than one
interactions involving SNPs that either are
the SNP that is associated with the outcome, or
SNPs that are in linkage disequilibrium with
those SNPs. We note from Table XI that both
Polyclass and logic regression virtually never
identify more than one of the interactions invol-
ving SNPs in linkage disequilibrium, while Monte
Carlo logic regression does this frequently. As
such, we believe that Monte Carlo logic regression
is more useful in situations with a large amount of

linkage disequilibrium than the other two ap-
proaches.
For model 2, there is only a fairly weak main

effect. Not surprisingly, the methods with a high
true-positive rate are also the methods with high
false-positive rates. When we fix the number of
models that include the correct interactions, we
see that Polyclass and Monte Carlo logic regres-
sion perform similarly.
The true model 3 is a logic regression model

with a fairly weak signal. Monte Carlo logic
regression appears to slightly outperform regular
logic regression and Polyclass.
Models 4 and 5 are traditional models that are

more geared toward logistic regression, as these
models include both main effects and interactions.
The effect size for model 5 is stronger than for
model 4. Surprisingly, for model 4, the Polyclass
approach does much worse. The explanation is that
with such a weak signal, the model selection will
remove all predictors unless the penalty term is
reduced so much that all sorts of noise predictors
are included. For this model, Monte Carlo logic
regression does better than all other approaches. In
about 60–70% of the simulations where Monte
Carlo logic regression with a threshold of 10%–15%
selects a model, it selects exactly the right interac-
tion. For model 5, Polyclass and Monte Carlo logic
regression perform equivalently.

TABLE IX. Frequency that either only incorrect interactions or no interactions (main effects for model 2) are selected in
simulation study

Models with only incorrect interactions Models with no interactions

Method 1 2 3 4 5 1 2 3 4 5

Logic regression 332 66 72 76 33 38 246 338 287 134
Polyclass (CV) 101 36 39 48 19 362 375 427 421 293
Polyclass (BIC) 238 122 22 28 12 190 119 435 429 194
Polyclass (match-LR) N/A 72 148 276 27 N/A 240 262 87 142
Monte Carlo LR (10%) 191 142 38 45 11 69 72 372 308 117
Monte Carlo LR (15%) 193 112 24 29 10 117 143 396 342 138
Monte Carlo LR (match-LR) 163 71 38 39 7 207 241 372 324 160

N/A: for Model 1 no polyclass penalty parameter could match the Logic Regression results.

TABLE X. Frequency that incorrect three-way inter-
actions are selected in simulation study

Model

Method 1 2 3 4 5

Logic regression 106 24 46 57 109
Monte Carlo LR (10%) 53 6 20 29 146
Monte Carlo LR (15%) 20 3 15 16 88
Monte Carlo LR (match-LR) 10 0 20 23 50
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Table X shows how often each approach
identified (incorrect) three-way interactions. For
the stepwise logistic regression implementation,
this is (virtually) impossible, since all three two-
way interactions and all three main effects are
required before a three-way interaction can be
considered. Monte Carlo logic regression with a
high threshold identifies very few high-order
interactions, but with a lower threshold the
number of three-way interactions, in particular
for models 1 and 5, is quite a bit larger. For model
1 these interactions often involve several of the
correlated SNPs, and may therefore in fact be
desirable. For model 5, this is not true. In some
sense, the real strong signal makes Monte Carlo
logic regression (as well as logic regression)
identify both the right interaction and some
additional false positives.
In summary, in these simulations, Monte Carlo

logic regression with a higher threshold performs
very well, especially in situations where the signal
is low. We believe that this is currently often the
case in SNP studies, and thus that Monte Carlo
logic regression may be a useful additional tool in
analyzing such data. It is, unfortunately, not
always clear what the right threshold is. In
particular, we note that for model 3, the lower
threshold worked slightly better than the higher
threshold. In practice, the threshold will depend
on both the sample size and the strength of the
signal, and a simulation study like the one we did
for the restenosis data may be a useful tool when
interpreting the results.

CONCLUSIONS

Most recent methodological developments for
the analysis of SNP association studies have been

in reconstructing haplotypes for haplotype asso-
ciation analysis or on the selection of a limited
number of tag-SNPs using haplotypes. There are
situations, however, when the use of haplotypes
may not necessarily be optimal, especially when
tag-SNPs or a smaller number of SNPs on a larger
number of genes are sequenced.
Logic regression was proposed to search directly

for interactions between SNPs. As most data sets
currently collected include several hundred to a
thousand sequenced subjects, like any other ana-
lyses, logic regression might not have enough
power to detect many interactions. This situation
will likely improve for common diseases in the
future as sequencing gets cheaper, and more
subjects will be genotyped, but currently it
prevents us from identifying subtle interactions.
For rare diseases, data sets may never get
sufficiently large. Thus it is important to identify
all potential interactions on one data set, which
hopefully can be validated by a follow-up study
that will sequence fewer SNPs on a larger number
of subjects. There is a need for methods that
identify potential interactions on one data set that
can be validated on others, sequencing fewer SNPs
but more subjects. In this paper, we introduced
Monte Carlo logic regression, an exploratory tool to
generate lists of potentially important interactions.
We believe that the combination of logic regression
(the feature to directly search for interactions) with
MCMC (the feature to create ensembles, not just a
single model) will prove valuable.
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TABLE XI. Frequency that interactions that are in linkage
disequilibrium with correct interaction are selected for
model 1

Number of LD interactions

Method 0 1 2

Logic regression 48 448 4
Polyclass (CV) 374 125 1
Polyclass (BIC) 207 292 1
Polyclass (match-LR) N/A N/A N/A
Monte Carlo LR (10%) 78 71 351
Monte Carlo LR (15%) 123 146 231
Monte Carlo LR (match-LR) 213 213 74

N/A: for Model 1 no polyclass penalty parameter could match the
Logic Regression results.
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APPENDIX

IMPLEMENTATION DETAILS OF MONTE
CARLO LOGIC REGRESSION

We here provide some basic details about the
implementation of Monte Carlo logic regression.

K Let K be the maximum number of logic trees in
the model; let Ki be the number of nonzero logic
trees at iteration i; thus KirK.

K Let Lji be logic tree j at iteration i, 1rjrK, and
let Lji¼0 if j4Ki. We code the shape of Lji for all
i and j, and count all nodes. Nonterminal nodes
[terminology of Breiman et al., 1984] contain an
operator, and terminal nodes contain a covari-
ate or the complement of a covariate. The
Monte Carlo logic regression model at iteration
i (MCLRi) is determined by Ki and Lji, 1rjrKi.

K Let sji be the number of terminal nodes in Lji. If
Lji¼0, we set sji¼0. Let Si¼Sjsji be the size of
MCLRi.

K Let ‘i be the likelihood of MCLRi. This like-
lihood is obtained from regressing the response
on the logic trees Lji, j¼1,y, Ki and the intercept.

K Let pi be the prior of MCLRi which is

pi ¼ ð1� aÞ�aSi� 1

NðSiÞ
where N(Si) is the number of possible MCLR
models of size i. N(Si) depends on K, Ki, the
maximum number of leaves in each tree, and
the number of covariates. To compute N(Si), we
precomputed the number of possible models of
a particular size, ignoring the fact that in each
terminal node, there can be c covariates and
their complements, and we multiply this pre-
computed number by ð2cÞSi. There are some
additional correction factors, as, for example,
we reduce double counting by requiring that
for every pair of adjacent terminal nodes, the
leftmost node has a covariate with a lower
index than the rightmost node.

K To propose a move, we first select an active
logic tree, or we select an empty tree if KioK.
We then determine which of the moves listed in
Figure 1 are possible, and select one of those
according to prespecified probabilities. (If all
possible moves are possible, we take P(alter-
nate leaf)¼10/23, P(alternate operator)¼1/23,
and the probability of each of the other four-
move types equal 4/23.) Depending on the
move type, we may also need to select an
operator and/or a predictor. While doing this,
we keep track of the probability qi-i+1 that we
would have in fact selected the move that we
selected. This provides a candidate for
MCLRi+1 which we refer to as MCLR0

iþ1.
K We now compute pi+1 and ‘iþ1 corresponding to

the proposed model, as well as the transition
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probability qi+1-i that we would make the
reverse move if we started with MCLR0

iþ1.
K Now set

r ¼ piþ1

pi
� qiþ1!i

qi!iþ1
� ‘iþ1

‘i

and with probability min{1, r}, we accept the
proposed move and set MCLRiþ1 ¼ MCLR0

iþ1.
Otherwise, we set MCLRi+1¼MCLRi.

K To make Monte Carlo logic regression a formal
Bayesian procedure, we would need to specify
a prior on the coefficients in the regression
model, and we would generate a random
coefficient vector at each step. Since our main
interest is in which variables are in the models,
rather than the models themselves, we forgo
this step.
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