
Chapter 3
Multivariate Nonparametric Regression

Charles Kooperberg and Michael LeBlanc

As in many areas of biostatistics, oncological problems often have multivariate pre-
dictors. While assuming a linear additive model is convenient and straightforward,
it is often not satisfactory when the relation between the outcome measure and the
predictors is either nonlinear or nonadditive. In addition, when the number of predic-
tors becomes (much) larger than the number of independent observations, as is the
case for many new genomic technologies, it is impossible to fit standard linear mod-
els. In this chapter, we provide a brief overview of some multivariate nonparametric
methods, such as regression trees and splines, and we describe how those methods
are related to traditional linear models. Variable selection (discussed in Chapter 2)
is a critical ingredient of the nonparametric regression methods discussed here; be-
ing able to compute accurate prediction errors (Chapter 4) is of critical importance
in nonparametric regression; when the number of predictors increases substantially,
approaches such as bagging and boosting (Chapter 5) are often essential. There are
close connections between the methods discussed in Chapter 5 and some of the
methods discussed in Section 3.8.2. In this chapter, we will briefly revisit those top-
ics, but we refer to the respective chapters for more details. Support vector machines
(Chapter 6), which are not discussed in this chapter, offer another approach to non-
parametric regression.

We start this chapter by discussing an example that we will use throughout the
chapter. In Section 3.2 we discuss linear and additive models. In Section 3.3 we gen-
eralize these models by allowing for interaction effects. In Section 3.4 we discuss
basis function expansions, which is a form in which many nonparametric regres-
sion methods, such as regression trees (Section 3.5), splines (Section 3.6) and logic
regression (Section 3.7) can be written. In Section 3.8 we discuss the situation in
which the predictor space is high dimensional. We conclude the chapter with dis-
cussing some issues pertinent to survival data (Section 3.9) and a brief general dis-
cussion (Section 3.10).
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3.1 An Example

We illustrate the methods in this chapter using data from patients diagnosed with
multiple myeloma, a cancer of the plasma cells found in the bone marrow. The
data were obtained from three consecutive clinical trials evaluating aggressive
chemotherapy regiments in conjunction with autologous transplantation conducted
at the Myeloma Institute for Research and Therapy, University of Arkansas for Med-
ical Sciences (Barlogie et al., 2006). The outcome for patients with myeloma is
known to be variable and is associated with clinical and laboratory measures (Greipp
et al., 2005). In this data set, potential predictors include several laboratory measures
measured at the baseline of the trials, age, gender, and genomic features, including
a summary of cytogenetic abnormalities and approximately 350 single nucleotide
polymorphisms (SNPs) for candidate genes representing functionally relevant poly-
morphisms playing a role in normal and abnormal cellular functions, inflammation,
and immunity, as well as for some genes thought to be associated with differential
clinical outcome response to chemotherapy.

In most of our analysis we analyze the binary outcome whether there was dis-
ease progression after 2 years, using the laboratory measures, age, and gender as
predictors. In Sections 3.7 and 3.8 we also analyze the SNP data; in Section 3.9 we
analyze time to progression and survival using a survival analysis approach.

3.2 Linear and Additive Models

Let Y be a numerical response, and let x = (x1, . . . ,xp)′ be a set of predictors span-
ning a covariate space X . We assume that the regression model Y takes the form of
a generalized linear model

g(E(Y |x)) = η(x), (3.1)

where g(·) is some appropriate link function and

η(x) = β0 +
k

∑
i=1

βixi. (3.2)

In this chapter, we mostly assume that Y is a continuous random variable and that
g(·) is the identity function so that (3.1) is a linear regression model or that Y is a
binary random variable and that g(·) is the logit function so that (3.1) is a logistic
regression model, but most of the approaches that are discussed in this chapter are
also applicable to other generalized linear models. In Section 3.9, we discuss some
modifications that make these approaches applicable to survival data.

Estimation via the method of maximum likelihood (or least squares) is well es-
tablished. Many nonparametric regression methods generalize the model in (3.2).
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In particular, we can replace the linear functions xi in (3.2) by smooth nonlinear
functions fi(xi). Now (3.2) becomes

η(x) = β0 +
k

∑
i=1

fi(xi). (3.3)

The functions fi(·) are usually obtained by local linear regression (loess, e.g.,
Loader, 1999) or smoothing splines (e.g., Green and Silverman, 1994). The model
(3.3) is known as a generalized additive model (Hastie and Tibshirani, 1990).

3.2.1 Example Revisited

Of the 778 subjects with complete covariate data in the multiple myeloma data,
171 subjects had progressed after 2 years while 570 subjects had not. Another 37
subjects were censored sufficiently early that we chose not to include them in our
analysis to retain a binary regression strategy. These 37 subjects are included in
the survival analysis (Section 3.9). We used nine predictors: age, gender, lactate de-
hydrogenase (ldh), C-reactive protein (crp), hemoglobin, albumin, serum β2 mi-
croglobulin (b2m), creatnine, and anyca (an indicator of cytogenetic abnormality).
The transformed values of ldh, crp, b2m, and creatnine on the logarithmic scale were
used in the analysis. In a linear logistic regression model, anyca has a Z-statistic of
4.8 (p = 10−6), log(b2m) has a Z-statistic of 2.7 (p = 0.007), and log(ldh), albumin,
and gender are significant at levels between 0.02 and 0.04.

We then proceeded to fit a generalized additive model, using a smoothing spline
to model each of the continuous predictors. We used the R-function gam(), which
selects the smoothing parameter using generalized cross-validation, and provides
approximate inference over the “significance” of the non-nonlinear components.
Three predictors were deemed significantly nonlinear at p = 0.05: age, log(crp),
and log(b2m), all at significance levels between 0.015 and 0.05. Note that these
significance levels are approximate, and they should be treated with caution. The
most interesting significant nonlinearity was probably in log(b2m). In Figure 3.1
we show the fitted component with a band of width twice the approximate standard
errors. It appears that the effect of log(b2m) is only present when log(b2m) is above
1, which is approximately the median in our data set.

3.3 Interactions

Nonadditive regression models (models for η(x) containing effects of interactions
between predictors) occur frequently in oncology. Such models may be needed be-
cause additive models, as discussed above, may not provide an accurate fit to the
data, but they may also be of interest to answer specific questions. For example,
models containing interactions may be used to identify groups of patients that are
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Fig. 3.1 The component of log(serum β2 microglobulin) in the generalized additive model for
progression after 2 years in the multiple myeloma data.

at especially high or low risk (e.g., LeBlanc et al., 2005), they may be of interest to
identify subgroup effects in clinical trials (e.g., Singer, 2005), or to identify gene ×
environment interactions (e.g., Board on health sciences policy, 2002).

In the following several sections, we will discuss general models for interactions
in a regression context. There are, however, special cases in which dedicated meth-
ods are more appropriate. For example, if the goal is to only identify patients at
especially high risk, we may not feel a need to model the risk (regression function)
for patients at low risk accurately (LeBlanc et al., 2006). When we know that some
predictors are independent of each other, as is sometimes the case for gene × envi-
ronment interactions or for nested case–control studies within clinical trials, more
efficient estimation algorithms are possible (Dai et al., 2008). We will not discuss
these situations in this chapter.

The most straightforward interaction model is to include all linear interactions up
to a particular level in model (3.2); for example, a model with two- and three-level
interactions is

η(x) = β0 +
k

∑
i=1

βixi + ∑
1≤i< j≤k

βi jxix j + ∑
1≤i< j<l≤k

βi jlxix jxl .

It is clear that with this approach the number of coefficients becomes very large
quickly. The problems that this causes are even worse when we generalize the
smooth model (3.3). This explosion of the size of the model is sometimes known
as the “curse of dimensionality,” and it can be formalized by establishing the con-
vergence rates of parameters in such models under appropriate conditions (Stone,
1994). Instead we may want to include only those interactions that are really needed
to accurately model the regression function η(x). Often this is done using some form
of stepwise regression. It turns out that approach can be generalized conveniently
using a basis function approach.
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3.4 Basis Function Expansions

The linear model (3.1) can also be used as the starting point for nonlinear, nonaddi-
tive, multivariate regression methods. Assume that the regression function η(x) is
in some p-dimensional linear space B(X ), and let B1(x), . . . ,Bp(x) be a basis for
B(X ). Then we can write

η(x) =
p

∑
i=1

βiBi(x). (3.4)

For a given set of basis functions B1(·), . . . ,Bp(·) estimation in (3.4) is a straightfor-
ward extension of (3.2).

Several nonparametric multivariate regression methodologies use a basis func-
tion approach, but rather than fixing the space B(X ) these approaches select
the space at the same time as the coefficients of the basis functions are esti-
mated. Three of the methodologies that are discussed later in this chapter use this
approach.

• Regression tree methods, such as classification and regression trees (CART,
Breiman et al., 1984). The basis functions that are used for tree methods are
indicator functions corresponding to rectangular regions of the predictor space.
Tree methods are discussed in Section 3.5.

• Multivariate adaptive regression splines (MARS, Friedman, 1991) and related
spline methods (e.g., Kooperberg et al., 1995; Stone et al., 1997). The basis func-
tions that are used for MARS and related methods are piecewise polynomials
(splines) and their tensor products. We discuss spline methods in Section 3.6.

• Logic regression (Ruczinski et al., 2003) is discussed in Section 3.7. The basis
functions that are used for logic regression are Boolean combinations of binary
predictors.

Stepwise regression methods provide useful tools for model selection using ba-
sis functions. As an example, suppose that we consider two linear spaces to model
η(x): a p-dimensional space Bp(X ) that is a sub-space of a (p+1)-dimensional
space Bp+1(X ). After we fit model (3.4) using basis functions for the smaller space
Bp(X ) we can compute a score test (Rao statistic, Rao, 1973) to evaluate how much
better η(x) would be modeled if we would require that η(x) ∈ Bp+1(X ) instead.
Similarly, after we fit model (3.4) using basis functions for the larger space Bp+1(X )
we can compute a Wald statistic to evaluate how much worse η(x) would be mod-
eled if we would require that η(x) ∈ Bp(X ). If these would be prespecified spaces
the score and Wald statistics could be compared with standard parametric distribu-
tions, similar to what is done in stepwise variable selection methods (see Chapter 2).
The adaptivity of these approaches does typically require other approaches to obtain
significant levels and prediction errors though (see Chapter 4).

We can generalize this stepwise procedure to an algorithm for stepwise model
building, that is used both in tree and in spline methods.



40 C. Kooperberg and M. LeBlanc

1. Start with modeling η(x)∈Bp
a . A common situation is that p = 1 and B1

a consists
of only constant functions.

2. Stepwise addition: replace Bp
a by a (p + 1)-dimensional space Bp+1

a of which
Bp

a is a subspace by considering a (large) set of candidate spaces Bp+1
a

that satisfy some method-dependent regularity conditions. Select the “best”
Bp+1

a for example, by selecting the Bp+1
a corresponding to the largest score

statistic.
3. Continue adding dimensions until either a prespecified dimension p∗ is reached,

or until the improvement in the fit between successive models becomes very
small.

4. Set Bp∗
d = Bp∗

a .
5. Proceed with stepwise deletion: replace Bp

d by a (p− 1)-dimensional subspace
Bp−1

d that satisfies some method-dependent regularity conditions. Select the
“best” Bp−1

d , for example, by selecting the candidate corresponding to the small-
est Wald statistic.

6. Continue until p reaches some minimum dimension (e.g., p = 1).
7. Out of all the linear spaces considered B1

a, . . . ,B
p∗
a = Bp∗

d , . . . ,B1
d , select one

either using some penalized likelihood like the Akaike information criterion
(Akaike, 1974) or the Bayesian information criterion (BIC, Schwarz, 1978), or
an honest method to estimate the prediction error, such as cross-validation.

3.5 Regression Tree Models

3.5.1 Background

Regression and classification trees are primarily known for their easy-to-understand
geometric representation. While a binary regression tree provides a simple descrip-
tion of groups of subjects, the model can also be cast in a regression spline form sim-
ilar to the methods presented in Section 3.6. The CART algorithm (Breiman et al.,
1984) is probably the best-known implementation of tree-based methods in the sta-
tistical literature and generally motivates the basics given in this section. There has
also been extensive research of tree-structured methods in machine learning, for
instance the C4.5 algorithm of Quinlan (1993). When extended to survival data, re-
gression trees have found a significant following in medicine because the sequence
of binary decisions leads to simple representation for prognostic groups of patients
treated in a similar fashion. Most tree-based methods for survival data have adopted
at least some aspects of the CART algorithm (Gordon and Olshen, 1985; Ciampi
et al., 1986; Segal, 1988; LeBlanc and Crowley, 1993). Some recent examples in
survival analysis using regression trees include Greipp et al. (2005), London et al.
(2005), Farag et al. (2006), and Gimotty et al. (2007).
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3.5.2 Model Building

3.5.2.1 Model Basis Set as Partition Function

A tree model can be represented as a binary tree T , where the set of terminal nodes ˜T
corresponds to the partition of the covariate space X into a number of M(˜T ) disjoint
subsets. A tree model can also be expressed by a basis function representation

η(x) = ∑
h∈˜T

ηhBh(x),

(compare with (3.4)) where Bh(x) = I{x ∈ Rh}, Rh is the region corresponding to a
terminal node h, and ηh is a vector of parameters (e.g., a mean, a clinical response
probability, or a higher-dimensional object such as a survival function S(t|η(x))
corresponding to a terminal region. For instance, the survival function could be of
semiparametric form S0(t)exp(η(x)) as in the proportional hazards model. We outline
important components of algorithms used to construct regression trees, including
specifying the types of partitions that are permitted; rules to prune the tree back;
and methods to choose model or tree size.

3.5.2.2 Splitting or Basis Selection

Trees represent a sequence of splits of the data or predictor space where each split is
induced by a rule of the form “x ∈ S” where S ⊂ X . Typically, splits are dependent
on a single covariate, so we may have S = {x : x j ≤ c} for an ordered predictor, or
S is a subset S ⊂ B = {v1,v2, ...,vr} of the r values of x j for categorical variables.

The tree model is grown in a forward stepwise fashion, similar to the stepwise
algorithm described in Section 3.4. Starting with the entire data set and predictor
space, each variable and potential split point is evaluated. The split point and vari-
able that leads to the “best” split (as described below) is chosen. The data and the
predictor space are partitioned into two groups. The same algorithm is then recur-
sively applied to each of the resulting groups. Therefore, at any point on the regres-
sion tree, a split at a node h yields two nodes which can also be represented with the
pair of basis functions

b+
h( j)(x) = I{xh( j) ∈ Sh( j)} and b−h( j)(x) = I{xh( j) /∈ Sh( j)}.

Each step in the growing process geometrically replaces a current node h with a left
and right daughter nodes l(h) and r(h) or equivalently a current basis function Bh(x)
for node h with the basis functions

Bl(h)(x) = Bh(x)b+
h( j)(x) and Br(h)(x) = Bh(x)b−h( j)(x).

Most tree algorithms use error, likelihood, or partial likelihood (or score tests such
as the logrank test) to select split points (or knots). The improvement for a split at
node h into left and right daughter nodes can be represented by



42 C. Kooperberg and M. LeBlanc

G(h) = D(h)− [D(l(h))+D(r(h))],

where D(h) is the residual error at a node. For uncensored continuous response
problems, D(h) is typically the mean residual sum of squares or mean absolute
error or for binary data it is typically binomial deviance. For survival data, it would
be reasonable to use the deviance corresponding to the assumed survival model. For
instance, the exponential model deviance for node h is

D(h) = ∑2

[

δi log

(

δi

̂λhti

)

− (δi −̂λhti)

]

,

where δi = 1 if the ith observation was a failure, and δi = 0 if the observation was
censored, and ̂λh is the maximum likelihood estimate of the hazard rate in node h
(Davis and Anderson, 1989). Alternatively G(h) can be an appropriate score test
statistic, for example the logrank test statistic.

Typically a large tree is grown to avoid missing structure and then pruned back
using a method described below.

3.5.3 Backwards Selection (Pruning)

Many stepwise regression methods utilize variations of backwards selection to select
more simple models (see Section 3.4). The local nature of the tree-based methods
leads to a fast backwards method, called cost complexity pruning in the CART algo-
rithm, for evaluating all possible submodels. The cost-complexity objective function
is defined as a penalized measure of fit

Dα(T ) = ∑
h∈˜T

D(t)+αM(˜T ),

where α is a nonnegative complexity parameter, D(h) is the estimated cost or im-
purity of a node, and M(˜T ) is the number of terminal nodes or constant regression
regions Rh. Therefore, the cost-complexity measure controls the trade-off between
the size or complexity of the tree, and how well the tree fits the data. Then, for any
value of α the goal is to find T (α): the tree that minimizes Dα(T ) among all pruned
subtrees of T . The algorithm finds the sequence of optimally pruned subtrees by
repeatedly deleting branches of the tree for which the average reduction in resid-
ual error per split in the branch is small. The process yields a nested sequence of
optimal subtrees T (α) = T (αl) = Tl for αl ≤ α < αl+1. The removal of a branch
can again be viewed in regression context as replacing each of the basis functions
corresponding to the pruned branch with the sum of the basis functions

Bl(x) = ∑
h∈Ql

Bh(x)
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where Ql represent the nodes in a branch rooted at node l. The final tree size is
selected by resampling (often K-fold cross-validation is used), although some diffi-
culties arise for semiparametric survival regression models.

3.5.4 Example Revisited

Using the example data set and variables described earlier, we constructed a regres-
sion tree to characterize the probability of death or progression within 2 years of reg-
istration. Figure 3.2 show a large tree constructed on the available predictors. Below
each terminal node is an estimate of the probability of progression or death. Since
the tree likely over-fits the data, a pruned tree is selected using cost-complexity
pruning and ten fold cross-validation of binomial deviance. The resulting tree
model is presented in Figure 3.3; it includes just two splits on variables serum β2

b2m<10.2

ldh<222

age<67.8

ldh<160

crp<25.3

albumin<3.6

0.235 0.560

0.2930.163 0.552

0.654 0.320

Fig. 3.2 An unpruned regression tree constructed to characterize 2-year progression probability
for the multiple myeloma data.

b2m<10.2

ldh<222

0.184 0.365

0.490

Fig. 3.3 A pruned regression tree constructed to characterize 2-year progression probability for
the multiple myeloma data.
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microglobulin and lactate dehydrogenase and identifies three outcome groups. Sub-
jects with serum β2 microglobulin ≥ 10.2 have the worst outcome with 49% having
either progressed or died within 2 years.

3.5.5 Issues and Connections

An often cited limitation of regression trees is that they are piecewise constant func-
tions when typically the underlying conditional distribution function of the outcome
is a smooth function of the predictors. If interest is in studying groups of patients,
this is not really a problem, other than the difficulty in specifying a specific frac-
tion of patients to be indicated by the prognostic rule. However, for prediction
applications the nonsmoothness does lead to reduced performance. Ensembles of
trees, through boosting, bagging, and Random Forests (Freund and Schapire, 1996;
Breiman, 1996; Friedman et al., 2000) have been used to circumvent this discrete-
ness at the cost of losing the simple decision rules. Alternatively, spline methods
such as HARE or MARS described in Section 3.6 can lead to substantially improved
predictions.

In part because of their nonsmoothness and the stepwise selection method, trees
are subject to considerable variability. An important parameter to control variability
is the minimum number of observations in a node (or uncensored observations in the
case of censored survival data). This issue connects to the importance of avoiding
placing knots in regression splines too close to the edge of the covariate distribution.
Again, ensembles of trees have been used to reduce variability (sometimes dramati-
cally) but again at the loss of the simple decision rule properties. Retaining decision
rule but somewhat smoother methods have been proposed, such as rule induction
via the PRIM method (Friedman and Fisher, 1999).

3.6 Spline Models

3.6.1 One Dimensional

Spline models are primarily used for the approximation of smooth univariate and
multivariate functions. In univariate problems, splines are piecewise polynomial
functions, that satisfy some regularity conditions. In particular, let t0 < t1 < · · ·< tK
be a set of K knots. A function f (x) is a cubic spline if in each of the intervals
(tk−1, tk), k = 1, . . . ,K, the function f (x) is a cubic polynomial, and it is twice dif-
ferentiable everywhere. Different spline models may have boundary restrictions for
f (x) on the intervals (−∞, t0] and [tK ,∞), but when there are no boundary conditions
it is easy to see that these cubic spline functions form a linear space, with basis

1,x,x2,x3,(x− tk)3
+, k = 0, . . . ,K, (3.5)
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where x+ = x if x > 0 and 0 otherwise. Cubic spline functions can approximate
functions very well, often with a small number of knots (Figure 3.4).

Similarly to cubic splines, a function f (x) is a linear spline if it is continuous and
linear on each of the intervals (tk−1, tk). A basis for linear spline functions is

1,x,(x− tk)+, k = 0, . . . ,K. (3.6)

Regression tree functions in one dimension can be seen as piecewise constant
splines. Linear and piecewise constant splines are not as good as cubic splines in ap-
proximating smooth curves, but they are often easier to deal with algorithmically. As
splines form a linear space, the spline model can be written in the form (3.4). Note
that in most situations (3.5) and (3.6) are not the bases used for computations, as
they are numerically very instable; instead usually a B-spline basis is used (de Boor,
1978).

Spline models naturally arise as solutions for some penalized regression prob-
lems. For example, based on regression data (Yi,xi), i = 1, . . . ,n, the solution of the
minimization problem

argmin
f (x)

∑
i
(Yi − f (xi))2 +λ

∫
(

d2 f (x)
dx2

)2

dx (3.7)

is a (natural) cubic spline with knots at every unique data point xi (Green and
Silverman, 1994). In practice, having a model with so many knots causes problems
in many nonlinear and high-dimensional problems. Instead, several other approaches
use spline methods with fewer knots.
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• Instead of using n knots, express f (x) as a spline function with a fairly large
number of knots, that is still much smaller than n, and then use a penalized op-
timization like (3.7) (O’Sullivan, 1988; Eilers and Marx, 1996). This approach
works fairly well in more complicated one-dimensional problems, as well as for
generalized additive models, in particular with automatic rules to select smooth-
ing parameters.

• Use a much smaller number of pre-specified knots, and carry out estimation with-
out penalty terms. The advantage is that the resulting problem is fully paramet-
ric, and that inference is thus well established. Estimation problems are often
small (and easy). See Quantin et al. (1999) for an application in oncology. The
disadvantage is that selection of the location of the knots can be arbitrary, and
generalizations to nonadditive models are not immediate.

• A third alternative is to use a stepwise algorithm like the one described in Sec-
tion 3.4 using knots and basis functions from (3.5). This approach was first used
in univariate regression by Smith (1982) and is behind algorithms like MARS
(Friedman, 1991) for linear regression, HARE (Kooperberg et al., 1995) for sur-
vival data, and Polyclass (Kooperberg et al., 1997) for logistic regression and
classification. We will discuss those in more detail for multivariate models be-
low. See Polesel et al. (2005) for an application in oncology.

3.6.2 Higher-Dimensional Models

The common approach to using regression splines in higher dimensions is to use
basis functions that are tensor products of basis functions in one dimension. For ex-
ample, if B1(x) = g1(xk) and B2(x) = g2(xl) are two basis functions that depend on
a single predictor, then B3(x) = g1(xk)g2(xl) is a tensor product basis function that
depends on two predictors. For high-dimensional problems, it is common to con-
sider only a few selected lower-order interactions. This has a variety of advantages:
(1) lower-dimensional components are typically easier to interpret, interactions in
models that do not contain the corresponding main effects are particularly difficult to
interpret; (2) using all (higher order) tensor products of lower-order basis functions
would yield an extremely large number of basis functions and may cause numerical
instability, and (3) from a theoretical perspective, it has been established that spline
functions have faster convergence rates if the largest order of interactions in models
is small (Stone, 1994). The exact restrictions on when tensor product basis functions
are allowed in spline models differs from one methodology to the other: for exam-
ple, MARS (Friedman, 1991) has fewer restrictions than HARE (Kooperberg et al.,
1995), Polyclass, and Polymars (Kooperberg et al., 1997). Here we will describe the
Polyclass algorithm for logistic regression as an example.

Assume that we have an i.i.d. sample of size n with a binary response vari-
able Y and a p-dimensional vector of predictors x = (x1, . . .xp)′. Polyclass uses
linear splines, and uses interactions involving at most two predictors (although
the generalization to higher-dimensional interactions is immediate). An allowable
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linear space B(§) can have basis functions 1, xi, (xi − tki)+, xix j, (xi − tki)+x j, and
(xi − tki)+(x j − tk j)+, with i �= j ∈ {1, . . . , p}, where the tki are knots in the range of
xi, with the additional conditions that

• B(x) = xix j can only be in B(§) if B(x) = xi and B(x) = x j are in B(§);
• B(x) = (xi − tki)+ can only be in B(§) if B(x) = xi is in B(§);
• B(x) = (xi − tki)+x j can only be in B(§) if B(x) = xix j and B(x) = (xi − tki)+ are

in B(§); and
• B(x) = (xi − tki)+(x j − tk j)+ can only be in B(§) if B(x) = xi(x j − tk j)+ and

B(x) = (xi − tki)+x j are in B(§).
The algorithm then proceeds with the stepwise algorithm in Section 3.4. The final
model is selected as the one that minimizes

AICα = −̂�(B(§);Yi,xi, i = 1, . . . ,n)+α p, (3.8)

where ̂�(B(§);Yi,xi, i = 1, . . . ,n) is the fitted log-likelihood for one of the models (of
dimension p) that was considered, and α is a penalty parameter, or that maximizes
the cross-validated likelihood.

3.6.3 Example Revisited

We applied the Polyclass methodology to the multiple myeloma data. The polyclass
model with the default penalty parameter of α = logn ≈ 6.66 (3.8) only involved
the two predictors log(b2m) and anyca in a linear fashion:

logit(P(progression)) = 2.19−0.99log(b2m)−0.50anyca.

The model with α = 4, while likely overfitting the data somewhat, is more interest-
ing, as it also involves age, gender, log(ldh), log(creatinine), a knot in age, log(ldh),
and log(b2m), and an interaction between age and gender. In Figure 3.5 we show a
contour plot for the fitted 2-year progression probabilities as a function of creatinine
and age, separately for men and women, when the other predictors are held at their
median values. The figure indicates that while older ages lead to quite similar pro-
gression proportions, younger females tend to have higher risk than younger males.

3.7 Logic Regression

Logic regression is a generalized regression methodology that is particularly suited
for situations in which (most) predictors are binary. Clearly this is the case when
predictors are single nucleotide polymorphisms (SNPs), as is the case for the
multiple myeloma data and many other oncological problems. The logic regression
model is
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Fig. 3.5 Fitted 2-year progression probabilities for a Polyclass model selected with penalty α = 4
as a function of creatinine and age, separately for men and women, when the other predictors are
held at their median values.

η(x) = β0 +
m

∑
i=1

βiLi(x). (3.9)

Each of the Li is a Boolean combination of binary predictors x j, j = 1, . . . ,J such as

Li = [(x7 and xc
13) or x5],

where “1” equals “true,” “0” equals “false,” and c refers to the complement. Ad-
ditional predictors Z or components to correct for population stratification can be
included additively in model (3.9).

Logic regression is an adaptive algorithm which selects those logic terms Li that
minimize the residual sum of squares or maximize the log-likelihood corresponding
to the model (3.9). Typically in logic regression the number of logic terms m is small
(between 1 and 3), and the logic terms can be interpreted as “risk factors.” The
optimization of the logic regression model is carried out using a greedy stepwise
algorithm or a stochastic simulated annealing algorithm.

For this simulated annealing algorithm it turns out to be very convenient to repre-
sent a logic expression Li(x) in a logic tree form (Figure 3.6). During the simulated
annealing algorithm, at each step one of the logic trees is replaced by another logic
tree using one of the operations displayed in Figure 3.7. Based on the new tree the
likelihood of η(x) is evaluated. If the new model is an improvement over the exist-
ing model the new model is retained; if the old model was better the new model is
retained with a probability that depends on the difference between the old and new
log-likelihood and the stage of the algorithm: early on almost all new models are ac-
cepted, while toward the end of the algorithm only improved models are accepted.
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Fig. 3.7 Changes in logic regression trees considered during the simulated annealing algorithm.

3.7.1 Example Revisited

We applied logic regression to the 348 SNPs of the multiple myeloma data, using
again 2-year progression as the outcome. Each of the 348 SNPs was recoded as two
binary predictors corresponding to a dominant and a recessive effect. In Figure 3.8
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Fig. 3.8 Cross-validation (test set) deviance for the logic regression analysis of the multiple
myeloma data. The white numbers in the black squares refer to the number of logic terms in
the logic regression model, the model size refers to the total number of leaves in these models
combines.

we show the test set deviance from tenfold cross-validation of the logic regression
analysis of this data. We note from this figure that based purely on deviance, none
of the models is better than the null-model. The model with two SNPs, however, has
a deviance that is not much worse than the null-model, and may thus be of interest
for further investigation. This model includes a logic regression term

rs4148737D∨ rs1143627Rc,

(rs1922242D was identical to rs4148737D) on this data. We will see the same SNPs
appear in the analysis in the next section.

3.8 High-Dimensional Data

With the development of new genomic technologies, very high-dimensional data
sets are now generated for oncological data. Data sets using gene expression data
may have data on tens of thousands of genes (e.g., Rosenwald et al., 2002), data sets
for whole genome association studies may have data on hundreds of thousands of
SNPs (e.g., Easton et al., 2007; Yeager et al., 2007). The traditional statistical para-
digm, where the number of cases n is much larger than the number of predictors p
no longer holds in this situation. Typical statistical methods for this type of data in-
volve substantial amounts of model selection, as well as shrinkage of the parameter
estimates.
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3.8.1 Variable Selection and Shrinkage

In moderate to high-dimensional predictor settings it is desirable to have parsimo-
nious or sparse representations of prediction models. In the previous sections we
have discussed stepwise basis function selection strategies. Alternatively, one can
investigate smoother model selection methods.

3.8.2 LASSO and LARS

Consider the linear regression setting, where there are n independent observations
(yi,xi1, . . . ,xik) of the response and k predictor variables. A technique proposed by
Tibshirani (1996) introduces an L1-penalty on the regression coefficients which leads
to both shrinkage and variable selection called least absolute shrinkage and selection
operator (LASSO). This is in contrast to ridge regression (Hoerl and Kennard,
1970) which minimizes the residual error subject to an L2-penalty which does not
lead to variable selection. The LASSO estimate ˜β = (β̃1, . . . , ˜βm)′ is defined as the
minimizer of

g(β ) =
n

∑
i=1

(yi −∑
k

βkxik)2 +λ1 ∑ |βk|1,

where λ1 is a nonnegative penalty parameter. Often the response and predictors are
standardized so that ∑

i
yi = 0 and ∑

i
xik = 0 and ∑

i
x2

ik = 1. This estimator has the

attractive property that as λ1 increases minimizing g(β ) with respect to β leads
to some of the βk set to zero and hence variable selection. For fixed λ1, for opti-
mization quadratic programming techniques or alternatives more efficient methods
by Osborne et al. (2004) can be used. A related and highly efficient algorithm, the
least angle regression algorithm (LARS, Efron et al., 2004), leads to efficient esti-
mation and links forward stage-wise methods and LASSO. LASSO and LARS are
discussed in more detail in Chapter 2.

LARS gives answers that are often close to LASSO; they are identical if the
predictors are orthogonal. However, the estimation algorithm aligns closely with the
forward stepwise model building strategies described in earlier sections. An outline
of the algorithm is given below:

1. Start with r = y, ̂β j = 0, j = 1, . . . , p. Assume that the x j are standardized.
2. Find the predictor xk that is most correlated with r.
3. Increase ̂βk in the direction of sign(cor(r,xk)) until another predictor x j has equal

correlation to r as it does with xk. Put j in set of active predictors, S.
4. Move (̂βk : k ∈ S) in the joint least squares direction for (xk : k ∈ S) until yet

another predictor has equal correlation with the current residual.
5. Repeat Step 4 until cor(r,xk) = 0 for all k.
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Note that the model can include at most min(p,n) variables. One strategy to alle-
viate this potential problem is the “elastic net” proposed by Zou and Hastie (2005).
The elastic net can be expressed as an optimization problem with the objective func-
tion with both squared and absolute penalty terms

g(β ) =
N

∑
i=1

(yi −∑
k

βkxik)2 +λ1 ∑ |βk|1 +λ2 ∑ |βk|2.

Their simulations show that the elastic net method leads to grouping of variables
where strongly correlated variables are either in or removed from the model as the
penalty parameters λ1 and λ2 are increased.

Note, that in this section we have described these methods in terms of the original
predictors xk; we could generalize to sets of regression spline or regression tree basis
functions, B j(x), j = 1, . . . , p as described in the previous section.

3.8.3 Dedicated Methods

While the methods described above directly lead to dimension reduction, there are a
large number of other methods which can be viewed as two-stage procedures that at
the first stage reduce the set of original variables xi to a small number of combina-
tions zi and then at the second phase uses those combinations in further regression
modeling. Many of the techniques can be viewed as generalizations or parallels to
either principal components regression, which uses only the joint distribution of the
xi at the first stage, or partial least squares which constructs linear combinations of
the predictors but also guides the selection by also using the outcome Y .

For instance, many gene expression modeling applications in oncology have
used clustering of genes to derive predictor variables for association modeling.
Jointly using outcome and expression was used by Hastie et al. (2001) and Det-
tling and Bühlmann (2002) and others. An important consideration when using both
the joint distribution of outcome and predictors at the first stage is that appropriate
assessment of prediction error and model fit is incorporated (for instance by cross-
validation) and included in the modeling building.

3.8.4 Example Revisited

We applied a generalization of the LARS regression method appropriate for binary
data (Park and Hastie, 2006) to the 2-year progression-free survival outcome, and
the multiple myeloma SNP data. Each of the SNPs was coded in dominant and
recessive form. In the Figure 3.9, we show the first few steps of the coefficient path.
Three SNPs appear to enter the model early, “rs1143627R,” “rs2756109D,” and
“rs703842R.” Note that the SNPs that were selected by logic regression entered
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Fig. 3.9 Coefficient path for myeloma SNP data.

the model as the first, fourth, and fifth SNP. Cross-validating the model building
process leads to the conclusion that the cross-validated estimates of deviance are
relatively flat with respect to model complexity and then start to increase for models
with larger numbers of predictors. Therefore, there is not strong evidence that the
combination of SNPs are significantly associated with disease progression.

Often there is interest in assessing if genomic information adds to prediction
beyond traditional laboratory measures. This can be easily incorporated by adjust-
ing for known myeloma clinical variables then fitting SNP data using the Park and
Hastie algorithm. This was done for the above example and while not unexpected
given the earlier analysis, it suggested no additional impact with SNP data on pre-
diction over the laboratory variables previously described.

3.9 Survival Data

An important goal in survival regression analysis is to determine how the distribu-
tion of survival times depends on the predictors. A complication in analyzing sur-
vival data in the context of oncology trials is that typically not all patients have died
(or progressed) by the time the analysis for the study is completed. Those patients
alive at the time of analysis are called censored.
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We denote the true survival time as a positive random variable T , whose distri-
bution may depend on a set of predictors x = (x1, . . . ,xk)′. Often it can be assumed
that the censoring mechanism is independent which facilitates likelihood construc-
tion and inference. Let the observed data be denoted by (Ti,δi,xi), i = 1, . . . ,n.

While one can express the conditional survival distribution using an accelerated
failure time specification which links the log(T ) to a linear model of the predictors,
log(T ) = a+b′X +e, hazard function modeling is most often used. The conditional
hazard function is defined as

λ (t|x) = lim
Δ→0

P(t ≤ T < t +Δ |t ≤ T ;x)
Δ

.

Here, we limit discussion to predictors which are real values measured at baseline; in
some survival settings they may represent time-dependent functions, x1(t), . . . ,xk(t),
as well. For instance, they may be measures of health status of the patient evolving
over time. The (conditional) hazard function can be interpreted as the probability
that someone dies in the next time interval of infinitesimal length Δ , given that he
is alive at time t. It is convenient to specify models on the logarithm scale so we
denote the logarithm of the hazard function as

α(t|x) = logλ (t|x).

If one assumes an additive model on the log scale,

α(t|x) = f (t)+η(x)

implies a proportional hazards assumption which is a focus of the model of Cox
(1972), which also assumes the baseline hazard function to be an unspecified non-
parametric function. Estimation in that case utilizes the partial likelihood. Note that
η(x) can represent a simple linear model or more flexible models depending on a re-
gression spline basis described in earlier sections. For instance, let B1(x), . . . ,Bp(x)
be a basis for B(X ). Then we can write

η(x) =
p

∑
i=1

βiBi(x). (3.10)

Within the proportional hazards class, tree-based or logic regression models can
be used to characterize the basis section used in the above expression.

However, regression models can be more general. For instance, the HARE model
(Kooperberg et al., 1995), can link both time and the predictors using a model spec-
ified as

α(t|x) = ∑
i

βiBi(t|x). (3.11)

The basis functions Bi(t|x) in HARE can depend solely on time or a predictor or
both on time and a predictor which allows specification on nonproportional hazards
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models. The basis functions are selected with an algorithm similar to the Polyclass
algorithm in Section 3.6.2.

Modeling the full survival distribution is slightly more general than modeling
within the proportional hazards framework. But there are also disadvantages: co-
efficients in model (3.10) are interpretable as log-relative risk estimates, while the
nonproportionality in (3.11) removes this interpretation. Computationally the partial
likelihood computations for (3.10) are much easier than the full likelihood compu-
tations for (3.11), as these later require integrating the conditional survival function
for every unique set of covariates x which, except for piecewise linear splines, be-
comes very demanding.

We end this section by noting that a simple transformation of the survival times
may facilitate modeling. Suppose that T is a continuous random variable having
distribution function F . Then U = F(T ) has a standard uniform distribution and
log(U) = Λ(T ), where Λ represents the cumulative hazard function, has a standard
exponential distribution and thus a constant hazard function. In the context of haz-
ard function modeling with HARE, the regression model applied to survival times
transformed by the marginal cumulative hazard function tends to require fewer
knots applied to the time variable allowing more focus on the impact of predictors
on the (transformed) outcome. The overall transformation applied to the data can be
semiparametric, for instance using a regression spline model for the hazard function
(the HEFT method of Kooperberg et al., 1995) or non-parametric using the em-
pirical cumulative hazard function estimate. This transformation can facilitate the
use of other flexible regression procedures utilizing exponential model likelihood,
which typically allows for much faster computation than partial likelihood. For
instance, after transforming the survival times by the cumulative hazard transfor-
mation, the survival times may be sufficiently well approximated by an exponential
distribution, so that a regression tree program based on the exponential likelihood
may perform well.

3.9.1 Example Revisited

The multiple myeloma data set included both overall survival and progression-free
survival endpoint data. In this analysis, we consider all 778 subjects with com-
plete covariate data. The HARE analysis of the time to progression is very similar
to the Polyclass analysis presented in Section 3.6.3. The analysis of the survival
time turned out more interesting, as it depended on serum β2 microglobulin, anyca,
log(ldh), and age, and included a nonproportionality component for log(ldh). In
Figure 3.10, we show the fitted hazard function for a person of age 56, with a
log(b2m) of 1, no anyca, and log(ldh) values of 4, 5, and 6, which roughly cor-
respond to the 25th, 50th, and 75th percentile of the log(ldh).
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Fig. 3.10 Fitted hazard functions for the HARE analysis of the multiple myeloma data.

3.10 Discussion

Many choices exist for flexible regression modeling of patient data from oncology
studies. Selection of appropriate methods, of course, depends on the goals in the
particular analysis. For instance, it could be best to characterize the risk of progres-
sion as a smooth function of a single important prognostic variable or to develop a
more general risk models using multiple predictors and variable selection. Adaptive
regression spline methods such as HARE are well suited to such problems. Alter-
natively, one may want to characterize groups of patients or subjects, or identify
interactions of binary predictor variables. Tree-based methods or logic regression
are two tools useful for such problems.

A common aspect of cancer data is that the strength of associations between
predictors and patient outcome is quite weak as demonstrated with the myeloma
data. While sometimes it is useful to slightly overfit the data to suggest models that
may be worth investigating further, in general we should prevent selecting regression
models that are not supported by the data. Therefore, using methods to obtain honest
prediction error to help avoid over-fitting is critical.
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